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Survey Paper Overview

• Tentative Title
- 소수샷 학습을 위한 메타러닝 연구동향 (A survey on meta learning algorithms for few-

shot learning)

• Introduction
- Meta learning vs Transfer learning or Multi-task Learning

• Problem Definition
- Supervised learning → Meta Learning

- Few-shot learning

- Dataset

• Meta Learning Algorithms
- Model based approaches

• MANN, MetaNet, SNAIL

- Metric based approaches

• Matching Networks, Relation Networks, Prototypical Networks

• Few-Shot Learning with Graph Neural Networks, Transductive Propagation Networks

- Optimization based approaches

• MAML, FOMAML, Meta-SGD, Reptile

• MT-Net, LEO

• Hierarchical bayesian model, probabilistic MAML, Bayesian MAML

- Set-input approaches

• Deep sets, Neural statistician
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Meta Learning

• Two ways to view meta-learning

- Mechanistic view

• Deep neural network model that can read in an entire dataset and make predictions 
for new datapoints

• Training this network uses a meta-dataset, which itself consists of many datasets, 
each for a different task

• This view makes it easier to implement meta learning algorithms

- Probabilistic view

• Extract prior information from a set of (meta-training) tasks that allows efficient 
learning of new tasks

• Learning a new task uses this prior and (small) training set to infer most likely 
posterior parameters

• This view makes it easier to understand meta learning algorithms
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• ICML 2019 tutorial, https://sites.google.com/view/icml19metalearning

https://sites.google.com/view/icml19metalearning


Meta Learning

• Limits of Supervised Learning
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• ICML 2019 tutorial, https://sites.google.com/view/icml19metalearning

https://sites.google.com/view/icml19metalearning


Meta Learning

• Additional data

- Unsupervised learning

- Transfer learning

- Multi-task learning

- Meta learning
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• ICML 2019 tutorial, https://sites.google.com/view/icml19metalearning

https://sites.google.com/view/icml19metalearning


MAML

• How MAML can learn prior knowledge from meta train dataset?

• Procedure of MAML algorithms
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min
𝜃

෍

𝑡𝑎𝑠𝑘 𝑖

ℒ(𝜃 − 𝛽∇𝜃ℒ(𝜃, 𝐷𝑖
𝑡𝑟), 𝐷𝑖

𝑡𝑠)

𝜙 ⟵ 𝜃 − 𝛼∇𝜃ℒ(𝜃, 𝐷𝑖
𝑡𝑟)

• Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." Proceedings of the 34th International Conference 
on Machine Learning-Volume 70. JMLR. org, 2017.



MAML

• Meta Train (Meta Learning)

• Randomly initialize 𝜃
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MAML

• Sample batch of tasks 𝑇𝑖~𝑝(𝑇)
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𝐶1

𝑇𝑖
𝐶𝑗

𝐶𝑚

⋮



MAML

• Sample 𝐾 datapoints 𝐷
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Sample 
k datapoints

𝐷 = {𝑥 𝑗 , 𝑦 𝑗 } 𝑘 = 1

𝑇𝑖

𝐶1

𝐶𝑗

𝐶𝑚

⋮



MAML

• Regression tasks: MSE

• Classification tasks: CE
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3 ℒ𝑇𝑖 𝑓𝜙 = ෍

𝑥(𝑗),𝑦(𝑗)~𝑇𝑖

𝑦(𝑗) log 𝑓𝜙 𝑥 𝑗

+(1 − 𝑦 𝑗 ) log(1 − 𝑓𝜙 𝑥 𝑗 )

2 ℒ𝑇𝑖 𝑓𝜙 = ෍

𝑥(𝑗),𝑦(𝑗)~𝑇𝑖

𝑓𝜙 𝑥 𝑗 − 𝑦(𝑗)
2

2



MAML

• Regression tasks: MSE

• Classification tasks: CE
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3 ℒ𝑇𝑖 𝑓𝜙 = ෍

𝑥(𝑗),𝑦(𝑗)~𝑇𝑖

𝑦(𝑗) log 𝑓𝜙 𝑥 𝑗

+(1 − 𝑦 𝑗 ) log(1 − 𝑓𝜙 𝑥 𝑗 )

2 ℒ𝑇𝑖 𝑓𝜙 = ෍

𝑥(𝑗),𝑦(𝑗)~𝑇𝑖

𝑓𝜙 𝑥 𝑗 − 𝑦(𝑗)
2

2

𝜃2
′

𝜃1
′

𝜃3
′

𝜃𝑖
′ = 𝜙𝑖



MAML

• Sample datapoints 𝐷𝑖
′
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𝜃2
′

𝜃1
′

𝜃3
′

𝜃𝑖
′ = 𝜙𝑖

Sample datapoints
From new task 𝑇𝑖

𝐷𝑖
′ = {𝑥 𝑗 , 𝑦 𝑗 }

𝑇𝑖
𝐶𝑗

𝐶𝑚

⋮

𝐶1



MAML

• Why MAML uses 𝐷𝑖
′ and 𝜃𝑖

′?

- 𝐷𝑖 and 𝐷𝑖
′ are disjoint
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𝛽∇𝜃 ෍

𝑇𝑖~𝑝(𝑇)

ℒ𝑇𝑖 𝑓𝜃𝑖
′

𝐷𝑖
′ = {𝑥 𝑗 , 𝑦 𝑗 }



MAML

• Meta update
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𝜃𝑖

𝐷𝑖
′ = {𝑥 𝑗 , 𝑦 𝑗 }

min
𝜃

෍

𝑇𝑖

ℒ(𝜃 − 𝛼∇𝜃ℒ(𝜃, 𝐷𝑖), 𝐷𝑖
′)



MAML

• Meta Test (Learning→Evaluation)
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Expected high performance 
from few-shot training dataset

𝐷𝑖
𝑡𝑟 = {𝑥 𝑗 , 𝑦 𝑗 }

Good initialization point 
by using meta learning



MAML

• Intuitive example: meta update → one-step adaptation (learning)
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𝜃𝑖

Model
parameter

Loss 
of task1

Loss 
of task2

min points 
for the sum 

of losses of all tasks

Model
parameter

Loss 
of new task

Optimal parameter 𝜽∗



MAML

• Intuitive example

- Can we meet sweet examples(new task) every time?
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Model
parameter

Loss 
of new task

Optimal parameter 𝜽∗

Key idea
“our training procedure is 
based on a simple machine 
learning principle: test and 
train conditions must match” 

Meta train

Meta test



MAML

• Computational Problem

- Consider the case of k>1 inner gradient step
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What if K iteration?

𝜃0 = 𝜃𝑚𝑒𝑡𝑎

𝜃1 = 𝜃0 − 𝛼∇𝜃ℒ
0 (𝜃0)

𝜃2 = 𝜃1 − 𝛼∇𝜃ℒ
0 (𝜃1)

⋯

𝜃𝑘 = 𝜃𝑘−1 − 𝛼∇𝜃ℒ
0 (𝜃𝑘−1)

𝜃0

𝜃1

𝜃2
𝜃𝑘

𝜃0 = 𝜃𝑚𝑒𝑡𝑎 = 𝜃𝑚𝑒𝑡𝑎 − 𝛽∇𝜃ℒ
1 (𝜃𝑘)

𝜃𝑚𝑒𝑡𝑎



MAML

• Computational Problem

- Consider the case of k>1 inner gradient step
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𝜃𝑚𝑒𝑡𝑎 = 𝜃𝑚𝑒𝑡𝑎 − 𝛽∇𝜃ℒ
1 (𝜃𝑘)∇𝜃ℒ

1 𝜃𝑘

=
𝜕ℒ 1 𝜃𝑘

𝜕𝜃
=
𝜕ℒ 1 𝜃𝑘

𝜕𝜃𝑘
⋅
𝜕𝜃𝑘
𝜕𝜃

𝑇

=
𝜕ℒ 1 𝜃𝑘

𝜕𝜃𝑘
⋅ෑ

𝑖=1

𝑘
𝜕𝜃𝑖
𝜕𝜃𝑖−1

𝑇

= ∇𝜃𝑘ℒ
1 𝜃𝑘 ⋅ ∇𝜃𝑘−1ℒ 𝜃𝑘 ⋯∇𝜃0ℒ 𝜃1 ⋅ ∇𝜃𝜃0

= ∇𝜃𝑘ℒ
1 𝜃𝑘 ⋅ෑ

𝑖=1

𝑘

∇𝜃𝑖−1ℒ 𝜃𝑖

= ∇𝜃𝑘ℒ
1 𝜃𝑘 ⋅ෑ

𝑖=1

𝑘

∇𝜃𝑖−1 𝜃𝑖−1 − 𝛼∇𝜃ℒ
0 𝜃𝑖−1

= ∇𝜃𝑘ℒ
1 𝜃𝑘 ⋅ෑ

𝑖=1

𝑘

(𝐼 − 𝛼∇𝜃𝑖−1 ∇𝜃ℒ
0 𝜃𝑖−1 ) → second order derivative problem

FOMAML

∇𝜃𝑘ℒ
1 𝜃𝑘

⋅ෑ

𝑖=1

𝑘

(𝐼 − 𝛼∇𝜃𝑖−1 ∇𝜃ℒ
0 𝜃𝑖−1 )



FOMAML

• First-Order MAML ignores the second derivative part
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𝜵𝜽𝒌𝓛
𝟏 𝜽𝒌 ⋅ෑ

𝑖=1

𝑘

(𝐼 − 𝛼∇𝜃𝑖−1 ∇𝜃ℒ
0 𝜃𝑖−1 )

𝜃𝑚𝑒𝑡𝑎 = 𝜃𝑚𝑒𝑡𝑎 − 𝛽∇𝜃ℒ
1 (𝜃𝑘)

𝜃𝑚𝑒𝑡𝑎 = 𝜃𝑚𝑒𝑡𝑎 − 𝛽∇𝜽𝒌ℒ
1 (𝜃𝑘)

𝜃0

𝜃1

𝜃2 𝜃𝑘 𝜃𝑘

𝜃𝑚𝑒𝑡𝑎



Reptile

• The Reptile works by repeatedly:

- 1) sampling a task,

- 2) training on it by multiple gradient descent steps,

- 3) and then moving the model weights towards the new parameters.

22

• Nichol, Alex, Joshua Achiam, and John Schulman. "On First-Order Meta-Learning Algorithms." arXiv preprint arXiv:1803.02999 (2018).

U corresponds to performing gradient descent



Reptile

• Intuitive example

- Assuming that a task 𝜏 ∼ 𝑝(𝜏) has a manifold of optimal network configuration, 
𝑊𝜏

∗. The model 𝑓𝜃 achieves the best performance for task 𝜏 when 𝜃 lays on 
the surface of 𝑊𝜏

∗

- To find a solution that is good across tasks, we would like to find a parameter 
close to all the optimal manifolds of all tasks
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• Nichol, Alex, Joshua Achiam, and John Schulman. "On First-Order Meta-Learning Algorithms." arXiv preprint arXiv:1803.02999 (2018).
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𝜃𝑚𝑒𝑡𝑎



MAML vs FOMAML vs Reptile 

• Can you know the difference between each methodology in the following 
figure?
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• https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html, slides on reptile by Yoonho Lee
• Nichol, Alex, Joshua Achiam, and John Schulman. "On First-Order Meta-Learning Algorithms." arXiv preprint arXiv:1803.02999 (2018).

https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html


Meta learning for NLP

• Meta learning for low-resource NLU

- Meta learning can make low-resource NLP model

- Meta learning for Machine translation

• GLUE

- The General Language Understanding Evaluation benchmark 
(https://gluebenchmark.com/) is a collection of resources for training, 
evaluating, and analyzing natural language understanding systems.
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• Gu, Jiatao, et al. "Meta-Learning for Low-Resource Neural Machine Translation." Proceedings of the 2018 Conference on Empirical Methods in Natural Language 
Processing. 2018.

• Dou, Zi-Yi, Keyi Yu, and Antonios Anastasopoulos. "Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks." Proceedings of the 
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.

• https://www.tensorflow.org/datasets/catalog/glue

https://www.tensorflow.org/datasets/catalog/glue


Meta learning for NLP

• Meta learning for low-resource NLU

• Comparison model

- MT-DNN

- BERT
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• Liu, Xiaodong, et al. "Multi-Task Deep Neural Networks for Natural Language Understanding." Proceedings of the 57th Annual Meeting of the Association for 
Computational Linguistics. 2019.

• Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." Proceedings of the 2019 Conference of the North American 
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019.

High-resource tasks
• SST-2: The Stanford Sentiment Treebank consists of 

sentences from movie reviews and human 
annotations of their sentiment

• QQP: The Quora Question Pairs2 dataset
• MNLI: The Multi-Genre Natural Language Inference 

Corpusn
• QNLI: The Stanford Question Answering Dataset

Target tasks 1
• CoLA: The Corpus of Linguistic Acceptability 

consists of English acceptability judgments
• MRPC: The Microsoft Research Paraphrase Corpus
• STS-B: The Semantic Textual Similarity Benchmark
• RTE: The Recognizing Textual Entailment
Target tasks 2
• SciTail: entailment dataset created from multiple-

choice science exams and web sentences.



Meta learning for NLP

• Experiment Results

- Uniform, Probability Proportional to Size(PPS), Mixed
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• Dou, Zi-Yi, Keyi Yu, and Antonios Anastasopoulos. "Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks." Proceedings of the 
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.



Q&A
Thank you!
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