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Meta Learning as Supervised Learning

Meta Learning(Computer Science)
– Meta learning is a subfield of machine learning where

automatic learning algorithms are applied on metadata about
machine learning experiments : learning to learn

How to learn the optimal p(φi |Dtr
i , θ) using meta-dataset?

Changhoon, Kevin Jeong Meta Reinforcement Learning as Task Inference 3 / 27



Meta Learning as Supervised Learning

Black-Box adaptation

– Train a neural network to represent p(φi |Dtr
i , θ)

– Use deterministic (point estimate) φi = fθ(Dtr
i )

– MANN, SNAIL, Meta-Nets, etc.

Optimization-based Inference

– Acquire through optimization
– Meta-parameters θ serve as a prior, so what form of prior?
– One successful form of prior knowledge: initialization for

fine-tuning, MAML, Reptile, etc.

Non-Parametric methods

– Use non-parametric learner
– Siamese nets, Matching nets, ProtoNets, etc.

etc.
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Meta Reinforcement Learning

Can we meta-learn reinforcement learning ”algorithms” that
are much more efficient?

– Reinforcement Learning

θ∗ = argmaxθEπθ(τ)[R(τ)]

= fRL(M), where M = {S,A,P, r}
– Meta Reinforcement Learning

θ∗ = argmaxθ
∑n

i=1 Eπφi
(τ)[R(τ)]

where, φi = fθ(Mi )
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Meta Reinforcement Learning

Meta-RL with recurrent policies

– Just RNN it to solve p(φi |Dtr
i , θ)

– Similar to Black-Box adaption as Meta-Supervised Learning

Meta-RL as an optimization problem

– bi-level optimization, MAML for RL

Meta-RL as partially observed RL

– it’s one of inference problem
– πθ(a|s, z), zt ∼ p(zt |s1:t, a1:t, r1:t)
– z → everything needed to solve the task

etc.
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Preliminaries: POMDP(Partially-Observable Markov
Decision Processes)

MDPs(Markov Decision Processes) : (X ,A,P, p0,R, γ)

– X : the state space
– A : the action space
– P(x ′|x , a) : the transition probability
– p0(x) : the initial state distribution
– R(r |x , a, x ′) : the probability of obtaining reward r
– γ : the discount factor

Markov Model
Do you have control

over the state transition?
No Yes

Are the states
completely observable?

Yes Markov Chain MDP

No HMM POMDP
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Preliminaries: POMDP(Partially-Observable Markov
Decision Processes)

POMDP(Partially-Observable Markov Decision Processes) :
(X ,A,P, p0,R,Ω,O, γ)

– X : the state space
– A : the action space
– P(x ′|x , a) : the transition probability
– p0(x) : the initial state distribution
– R(r |x , a, x ′) : the probability of obtaining reward r
– Ω : the observation state
– O(o′|x ′, a) : the probability of observing o′ ∈ Ω
– γ : the discount factor
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Preliminaries: POMDP(Partially-Observable Markov
Decision Processes)

The solution to a POMDP

– The observed trajectory as τ0:t = (o0:t , a0:t−1, r0:t−1)

– Find a policy π∗(at |τ0:t) which maximizes discounted return
i.e. π∗ = argmaxπEτ0:∞,x0:∞∼pπ [

∑∞
t=0 γ

trt ]

Belief state

– The optimal policy’s dependence on the trajectory can be
summarized using belief state bt(x) ≡ pπ(xt = x |τ0:t)

– The belief state is a sufficient statistic for optimal at in the
sense that π∗(at |τ0:t) = π∗(at |bt)
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Meta Reinforcement Learning and Task Inference

Assumptions for the POMDPs

– W : the space of tasks

– p(w) : the distribution over tasks w ∈ W
– each task w is a MDP (X ,A,Pw , pw0 ,R

w , γ)

– train an agent that maximizes future discounted rewards based
on a ’small’ number of interactions with unknown task w
drawn from p(w)

– A single episode per one MDP; multi-episode interactions can
be achieved by changing the MDPs(reset init.)
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Meta Reinforcement Learning and Task Inference

Formulation of meta-RL problem using POMDPs
– sharing the same A as MDPs

– states (x ,w) ∈ X ×W
– transtion distribution P(x ′,w ′|x ,w , a) = δ(w ′ − w)Pw (x ′|x , a)

– initial distribution p0(x ,w) = p(w)p0(x |w)

– reward distribution R(r |x ,w , a, x ′,w ′) = Rw (r |x , a, x ′)
– deterministic observations O(o′|x ′,w , a) = δ(o′ − x ′)

Assumption of the POMDPs: An agent
– The optimal agent π∗(at |τ0:t) which does not access to task

labels w

– but is assumed to have access to past observed interactions
with the task, e.g. using a LSTM memory, solves:
maxπ

∑
w p(w)

∑
τ00:∞ pπ(τ0:∞|w)[

∑∞
t=0 γ

trt ]
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Meta Reinforcement Learning and Task Inference

Assumptions of the POMDPs : Belief states

– The belief state bt(x ,w) = p(x ,w |τ0:t) = δ(x − xt)p(w |τ0:t),
where p(w |τ0:t) is the posterior over tasks

– The agent itself has no access to w , the posterior satisfies(See
Appendix A),

Theorem

p(w |τ0:t) ∝ p(w)p0(x0|w)
∏t−1

t′=0
P(xt′+1|xt′ , at′ ,w)R(rt′ |xt′ , at′ , xt′+1),w).

p(w |τ0:t) ∝ p(w)p0(x0|w)
∏t−1

t′=0
P(rt′ , xt′+1|xt′ , at′ ,w)

– That is, given τ0:t , the posterior is independent of the policy
which generated the trajectory

– This result will allow us to drive an off-policy algorithm

– We overload notation and refer to the posterior alone as belief
state bt(w) = p(w |τ0:t), since it’s the only interesting part
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Meta Reinforcement Learning and Task Inference

So, how to train the model?

– The optimal meta-learner only needs to make decisions based
on current state xt and the current belief bt(w)

– This implication being that we can restrict as;
π(at |τ0:t) ≡ π(at |xt , bt)

– But bt is intractable to compute, requiring detailed knowledge
of POMDPs conditional distributions

– This argument motivates an agent consisting of two modules;

1 π(at |xt , b̂t) : the policy dependent on the current state and
(an approximate representation of)the posterior

2 the belief module : learns to output an approximate
representation b̂t of belief

Problem But how can we estimate(train) the b̂t?
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Learning the Belief Network

The problems of estimating belief posterior b̂t
– Most past work has taken unsupervised approach to learning

belief representations, because there are no access to additional
useful information about the true underlying belief state

– Learning belief modules via unsupervised approaches is
difficult, and is general unsolved

Auxiliary Supervised Learning

– Fortunately, in meta-RL scenario, we can use the task
information designed by human

– Denote ht as task information, w as task description(e.g. the
location of the goal), τ0:t as trajectory
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Learning the Belief Network

Different type of task description for Supervised Learning

1 Task description : train a belief module bθ(ht |τ0:t) to directly
true task description ht = w

2 Expert actions : Assume we have expert agents πw ;e(at |τ0:t)
on each training task, and we can train the belief module to
predict the action chosen by expert, ht = aw ;e

t

3 Task embeddings : We can define K tasks and indexing these
by {1, 2, ...,K}, so we can train belief module to predict the
index iw of task w , ht = iw

– cf) if we have an embedding Fw ∈ Rd of each task using
pre-training, we can predict ht = Fw (See Appendix B)

Note Once the belief module is learnt, this information is not needed
during test time
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Learning the Belief Network

Train a belief module as supervised learning

– train belief modules bθ(ht |τ0:t) to predict task information in a
supervised way by minimizing Ep(ht |τ0:t)[− log bθ(ht |τ0:t)]

– So, the target distribution is p(ht |τ0:t), we can minimize
KL(p(ht |τ0:t)||bθ(ht |τ0:t))

Note

In this meta-RL setup(c.f. amortized inference, Samuel, Gershman et
al.,2014), we can obtain samples from posterior because each training
episode, because (w , τ0:t) ∼ p(w)pπ(τ0:t |w)

The posterior over w and ht is independent of the policy, belief network
can be trained using off-policy data generated by previous policies
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Architectures and Algorithms

A : A baseline LSTM agent

B : Belief network agent

C : Auxiliary head agent

* LSTMs and information bottleneck(IB) are optional

* RL Algorithms : SVG(0)(Nicolas Heess et al.,2015) as
off-policy, PPO(John Schulman, et al.,2017) as on-policy
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Architectures and Algorithms

A : A baseline LSTM agent

– A general recent meta-RL formulation without belief networks
– Similar to RL2(Yan Duan, et al.,2017)
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Architectures and Algorithms

B : Belief network agent

– Augment the baseline with a belief net which output an
approximate posterior over the auxiliary task information ht

– The actor and critic are fed a representation of the belief state
given by the penultimate layer(performance issue)

– Do not backpropagate gradients to the belief net → enable
that belief net focusing on learn good representation itself
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Architectures and Algorithms

C : Auxiliary head agent

– The auxiliary supervised belief loss directly shapes the
representations inside the actor and critic networks

* Information Bottleneck(IB)

– Regularization the learnt representation by adding a stochastic
layer(Deep variational information bottleneck, Alexander A
Alemi, et al.,2017) on top of the LSTMs
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Experiments

Experiments focus on;

1. Direct training of belief net with previleged information can
speed up learning

2. Train the recurrent agents efficiently off-policy

3. IB regularization is an effective way for speeding up off-policy
learning(PPO agents do not use IB)

4. Scale up to complex continuous env(Numpad) with sparse
rewards and requiring long-term memory

environments

– Multi-armed bandit, Semicircle, Cheetah velocity, Noisy target,
Numpad(See Appendix)

– Train on 100 tasks and evaluate on a holdout set of 1000 tasks
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Experiments

Multi-armed bandit

– 20 arms and 100 horizon

– task description : a vector of arm probabilities

Semicircle

– A point mass has to find a target on a semicircle

– task description : an angle of semi-circle(e.g. max = 2π)
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Experiments

Cheetah velocity

– r(v) = max(1− | v
vtarget

− 1|, 0), task description : vtarget

Noisy target

– rolling ball but not teleported to origin upon reaching target

– Should focus on integrate Bernoulli noisy reward(being 1
p = min(0.5, (1 + d2)−1)) rather then remembering target
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Experiments

Behavioral analysis

* PEARL agent vs Belief agent in 2d navigation

– The belief agent explores as much of the semicircle as possible
in every episode until it finds the rewarding target

– The PEARL agent simply tries a single target on the semicircle
in every episode, and repeats this sampling until it hits the
actual rewarding target
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Conclusion

Main contributions

1. We demonstrate that leveraging this cheap task information
during meta-training is a simple and cheap way to boost the
performance of meta-RL agents

2. We show that we can train meta-RL agents with recurrent
policies efficiently using off-policy algorithms

3. We experimentally demonstrate that our agents can solve
difficult meta-RL problems in continuous control environments,
involving sparse rewards
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Thank you for your attention!
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