

“We have experienced many state-of-the-art models, but we rarely understand
the generalization of Neural Networks”

“We have experienced many state-of-the-art models, but we rarely understand
the generalization of Neural Networks”

AutoML!

 Neural Architecture Search with Reinforcement Learning
• Barret Zoph, Quoc V. Le (Google Brain)
• arXiv, 15 Feb 2017
• ICLR 2017, Oral Presentation

 Efficient Neural Architecture Search via Parameter Sharing
• Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, Jeff Dean
• arXiv, 12 Feb 2018

 An overview of Neural Architecture Search

 The flow of Neural Architecture Search

RNN Controller Child Network(Training) Validation set Accuracy

Reinforcement Learning for
Update Controller’s Parameter

REINFORCE Algorithm

 Meta-Learner Model(Controller RNN)

Softmax Classifier

Data Embedding

[1,3,5,7] [1,3,5,7] [1,2,3] [1,2,3] [24,36,48,64]

 Monte-Carlo Policy Gradient(REINFORCE)
• Update parameters by stochastic gradient ascent
• Using policy gradient theorem

• Using return 𝑣𝑡 as an unbiased sample of 𝑄𝜋𝜃(𝑠𝑡, 𝑎𝑡)
• ∆𝜃𝑡 = 𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡, 𝑎𝑡) 𝑣𝑡

 REINFORCE Algorithm in Neural Architecture Search

Parameters of Controller RNN Accuracy of architecture on held-out dataset

Architecture predicted by controller RNN viewed as a
sequence of actions

Number of models
in minibatch

Baseline : for reduce
high variance

 Accelerate Training with Parallelism and Asynchronous Updates

Distributed Learning

Each Controller
Replica samples
the m architecture
and learns in
parallel

The Parameter Server (total 10) stores
the parameters and sends(or receive)
them to the Controller Replica

- Used 800 GPU
- It takes 2-3 weeks to learn 13,000-15,000 models

 Increase Architecture Complexity : Skip Connections

ResNet or DenseNet has skip
connections

 Increase Architecture Complexity : Skip Connections

𝑙𝑎𝑦𝑒𝑟 𝑗 𝑙𝑎𝑦𝑒𝑟 𝑖

 Generate Recurrent Cell Architectures

- In order to find an RNN cell similar to LSTM or GRU, a search space was created by referring
to the LSTM cell

- Modeling a step of tree : take 𝑥𝑡 and ℎ𝑡−1 as inputs and produce final output ℎ𝑡

 Generate Recurrent Cell Architectures

- Express the graph's
operation as a tree

- Decide which
activation function
or operation to use

- Controller RNN predicts the combining method and determines
the label of the tree

- Controller RNN refers to the tree to determine which function
to select and generate

- Once the tree is created,
the architecture of the
RNN cell is implemented

<- Index 0

 Generate Recurrent Cell Architectures

LSTM Cell NAS Cell(Does not include
𝑚𝑎𝑥 and 𝑠𝑖𝑛 operations)

NAS Cell(Include 𝑚𝑎𝑥 and 𝑠𝑖𝑛
operations, but NAS does not

use 𝑠𝑖𝑛)

 Experiment Details & Results

Convolutional Neural Architecture
Search for CIFAR-10 Dataset

Recurrent Neural Architecture Search
for Penn Treebank Dataset

 Experiment Details & Results : CIFAR-10

Almost State-of-the-art
and smaller and 1.05x
faster!

 Experiment Details & Results : Penn Treebank

State-of-the-art!
When the cell is transferred to the character
language modeling, also achieved a state-of-
the-art, perplexity of 1.214

What is the perplexity?
- Measure how well language modeling

works
- A measure of how well the probability

model predicts sample words

𝑒𝑙𝑜𝑠𝑠 = 𝑒−
1
𝑁
 𝑖=1
𝑁 𝑙𝑛𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝑙𝑜𝑠𝑠 = −
1

𝑁

𝑖=1

𝑁

𝑙𝑛𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 What are the shortcomings of Neural Architecture Search?

• NAS used 800 GPUs for 28days and NAS-Net used 450 GPUs for 3-4days
(i.e. 32,400-43,000 hours)

• Where is the most severe bottleneck?

- The Child networks measure the accuracy
and then all learned weights are discarded

- So if the RNN Controller outputs the same
hyper-parameters, there is a problem that
needs to be learned again

 ENAS Method : Directed Acyclic Graph(DAG)

Node
Local computations
(Activation function etc.)

Edge
Flow of information between N nodes

The nodes share information about the
weights and reuse the previously learned
information when the same node is
selected

 ENAS Method : Designing Recurrent Cells

DAG Recurrent
Cell

Controller RNN : The outputs result in DAG and recurrent cell

Simple example : N = 4 (Activation function)
1. At node 1

Controller samples 𝑡𝑎𝑛ℎ

-> ℎ1 = tanh(𝑥𝑡 ∙ 𝑊
𝑥 + ℎ𝑡−1 ∙ 𝑊1

ℎ)
2. At node 2

Choose previous index 1 and activation function is 𝑅𝑒𝐿𝑈

-> ℎ2 = 𝑅𝑒𝐿𝑈(ℎ1 ∙ 𝑊2,1
ℎ)

3. At node 3
Choose previous index 2 and activation function is 𝑅𝑒𝐿𝑈

-> ℎ3 = 𝑅𝑒𝐿𝑈(ℎ2 ∙ 𝑊3,2
ℎ)

4. At node 4
Choose previous index 1 and activation function is 𝑡𝑎𝑛ℎ

-> ℎ3 = 𝑡𝑎𝑛ℎ(ℎ1 ∙ 𝑊4,1
ℎ)

5. Output
Since the indices 3 and 4 were not sampled, the recurrent
uses their average
-> ℎ𝑡 = (ℎ3 + ℎ3)/2

 ENAS Method : Designing Recurrent Cells

DAG Recurrent
Cell

Controller RNN : The outputs result in DAG and recurrent cell

Simple example : N = 4 (Activation function)
1. At node 1

Controller samples 𝑡𝑎𝑛ℎ

-> ℎ1 = tanh(𝑥𝑡 ∙ 𝑊
𝑥 + ℎ𝑡−1 ∙ 𝑊1

ℎ)
2. At node 2

Choose previous index 1 and activation function is 𝑅𝑒𝐿𝑈

-> ℎ2 = 𝑅𝑒𝐿𝑈(ℎ1 ∙ 𝑊2,1
ℎ)

3. At node 3
Choose previous index 2 and activation function is 𝑅𝑒𝐿𝑈

-> ℎ3 = 𝑅𝑒𝐿𝑈(ℎ2 ∙ 𝑊3,2
ℎ)

4. At node 4
Choose previous index 1 and activation function is 𝑡𝑎𝑛ℎ

-> ℎ3 = 𝑡𝑎𝑛ℎ(ℎ1 ∙ 𝑊4,1
ℎ)

5. Output
Since the indices 3 and 4 were not sampled, the recurrent
uses their average
-> ℎ𝑡 = (ℎ3 + ℎ3)/2

Weight sharing
When a connection between
2 and 1 occurs, that is, when

the edge is activated, the
weight will be reused

 ENAS Experiment Result

CIFAR-10

Penn Treebank

Using Single GTX 1080Ti GPU, the search for architectures
takes less than 16hours (1000x less expensive than NAS)

