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 Neural Architecture Search with Reinforcement Learning
• Barret Zoph, Quoc V. Le (Google Brain)
• arXiv, 15 Feb 2017
• ICLR 2017, Oral Presentation

 Efficient Neural Architecture Search via Parameter Sharing
• Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, Jeff Dean
• arXiv, 12 Feb 2018



 An overview of Neural Architecture Search



 The flow of Neural Architecture Search 

RNN Controller Child Network(Training) Validation set Accuracy

Reinforcement Learning for 
Update Controller’s Parameter

REINFORCE Algorithm



 Meta-Learner Model(Controller RNN)

Softmax Classifier

Data Embedding

[1,3,5,7] [1,3,5,7] [1,2,3] [1,2,3] [24,36,48,64]



 Monte-Carlo Policy Gradient(REINFORCE)
• Update parameters by stochastic gradient ascent
• Using policy gradient theorem

• Using return 𝑣𝑡 as an unbiased sample of 𝑄𝜋𝜃(𝑠𝑡, 𝑎𝑡)
• ∆𝜃𝑡 = 𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡, 𝑎𝑡) 𝑣𝑡



 REINFORCE Algorithm in Neural Architecture Search

Parameters of Controller RNN Accuracy of architecture on held-out dataset

Architecture predicted by controller RNN viewed as a 
sequence of actions

Number of models 
in minibatch

Baseline : for reduce 
high variance



 Accelerate Training with Parallelism and Asynchronous Updates

Distributed Learning

Each Controller 
Replica samples 
the m architecture 
and learns in 
parallel

The Parameter Server (total 10) stores 
the parameters and sends(or receive) 
them to the Controller Replica

- Used 800 GPU 
- It takes 2-3 weeks to learn 13,000-15,000 models



 Increase Architecture Complexity : Skip Connections

ResNet or DenseNet has skip 
connections



 Increase Architecture Complexity : Skip Connections

𝑙𝑎𝑦𝑒𝑟 𝑗 𝑙𝑎𝑦𝑒𝑟 𝑖



 Generate Recurrent Cell Architectures

- In order to find an RNN cell similar to LSTM or GRU, a search space was created by referring 
to the LSTM cell

- Modeling a step of tree : take 𝑥𝑡 and ℎ𝑡−1 as inputs and produce final output ℎ𝑡



 Generate Recurrent Cell Architectures

- Express the graph's 
operation as a tree

- Decide which 
activation function 
or operation to use

- Controller RNN predicts the combining method and determines 
the label of the tree

- Controller RNN refers to the tree to determine which function 
to select and generate

- Once the tree is created, 
the architecture of the 
RNN cell is implemented

<- Index 0



 Generate Recurrent Cell Architectures

LSTM Cell NAS Cell(Does not include 
𝑚𝑎𝑥 and 𝑠𝑖𝑛 operations)

NAS Cell(Include 𝑚𝑎𝑥 and 𝑠𝑖𝑛
operations, but NAS does not 

use 𝑠𝑖𝑛)



 Experiment Details & Results

Convolutional Neural Architecture 
Search for CIFAR-10 Dataset

Recurrent Neural Architecture Search 
for Penn Treebank Dataset



 Experiment Details & Results : CIFAR-10

Almost State-of-the-art 
and smaller and 1.05x 
faster!



 Experiment Details & Results : Penn Treebank

State-of-the-art!
When the cell is transferred to the character 
language modeling, also achieved a state-of-
the-art, perplexity of 1.214

What is the perplexity?
- Measure how well language modeling 

works
- A measure of how well the probability 

model predicts sample words
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 What are the shortcomings of Neural Architecture Search?

• NAS used 800 GPUs for 28days and NAS-Net used 450 GPUs for 3-4days
(i.e. 32,400-43,000 hours)

• Where is the most severe bottleneck?

- The Child networks measure the accuracy 
and then all learned weights are discarded

- So if the RNN Controller outputs the same 
hyper-parameters, there is a problem that 
needs to be learned again



 ENAS Method : Directed Acyclic Graph(DAG)

Node 
Local computations
(Activation function etc.)

Edge
Flow of information between N nodes

The nodes share information about the 
weights and reuse the previously learned 
information when the same node is 
selected



 ENAS Method : Designing Recurrent Cells

DAG Recurrent 
Cell

Controller RNN : The outputs result in DAG and recurrent cell

Simple example : N = 4 (Activation function)
1. At node 1

Controller samples 𝑡𝑎𝑛ℎ

-> ℎ1 = tanh(𝑥𝑡 ∙ 𝑊
𝑥 + ℎ𝑡−1 ∙ 𝑊1

ℎ )
2. At node 2

Choose previous index 1 and activation function is 𝑅𝑒𝐿𝑈

-> ℎ2 = 𝑅𝑒𝐿𝑈(ℎ1 ∙ 𝑊2,1
ℎ )

3. At node 3
Choose previous index 2 and activation function  is 𝑅𝑒𝐿𝑈

-> ℎ3 = 𝑅𝑒𝐿𝑈(ℎ2 ∙ 𝑊3,2
ℎ )

4. At node 4
Choose previous index 1 and activation function is 𝑡𝑎𝑛ℎ

-> ℎ3 = 𝑡𝑎𝑛ℎ(ℎ1 ∙ 𝑊4,1
ℎ )

5. Output
Since the indices 3 and 4 were not sampled, the recurrent 
uses their average
-> ℎ𝑡 = (ℎ3 + ℎ3)/2
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Weight sharing
When a connection between 
2 and 1 occurs, that is, when 

the edge is activated, the 
weight will be reused



 ENAS Experiment Result

CIFAR-10

Penn Treebank

Using Single GTX 1080Ti GPU, the search for architectures 
takes less than 16hours (1000x less expensive than NAS)




