

Graph Definition of Graph

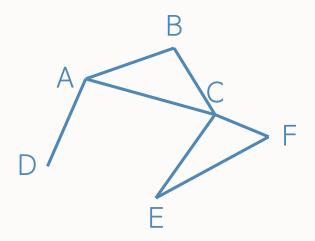
- Graph
 - A collection of objects where some pairs of objects are connected by links



• Objects nodes, vertices N

• Interactions links, edges *E*

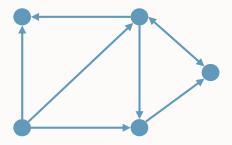
• System network, graph G(N, E)

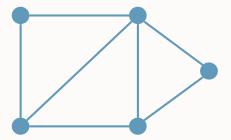


Graph

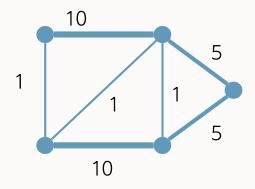
Structure of Graph

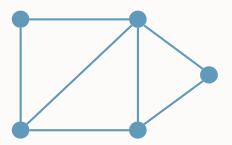
• Directed / Undirected





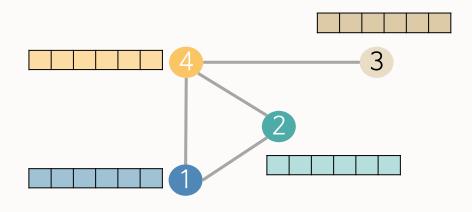
• Weighted / Unweighted



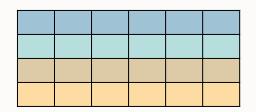


Graph

Graph Representation



Node-feature matrix



Adjacency matrix

0	1	0	1	
1	0	0	1	
0	0	0	1	
1	1	1	0	

$$A = \begin{cases} A_{ij} = 1 & if there is edge \\ A_{ij} = 0 & if there is no edge \end{cases}$$

Degree matrix

- 1					
	2	0	0	0	
	0	2	0	0	
	0	0	3	0	
	0	0	0	1	

$$D_{ii} = \sum_{i \sim j} A_{ij}$$

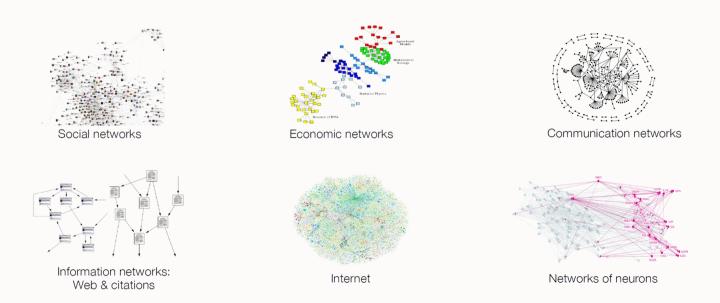
Laplacian matrix

2	-1	0	-1	
1	2	0	-1	
0	0	3	-1	
-1	-1	-1	2	

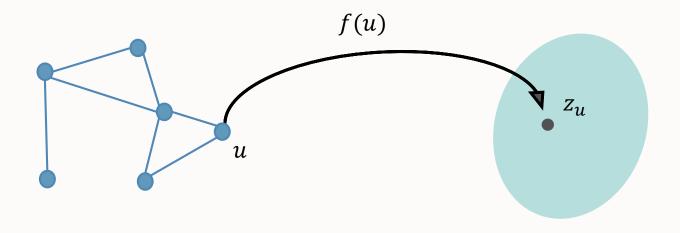
$$L = A - D$$

Graph Why Graph?

- Universal Language for describing complex data
- Shared vocabulary between fields
- Data availability & computational challenges



Node Embeddings Definition.

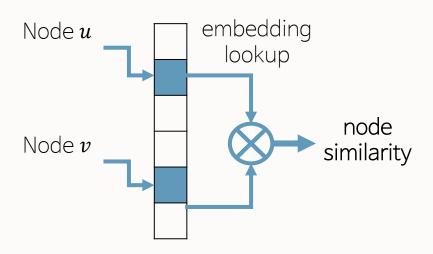


- Node embedding function (f) map each node in a graph into a lowdimensional space
- similarity in the embedding space approximates similarity in the graph
- Could be helpful with tasks such as…
 - → node classification, graph classification, link prediction...

Node Embeddings

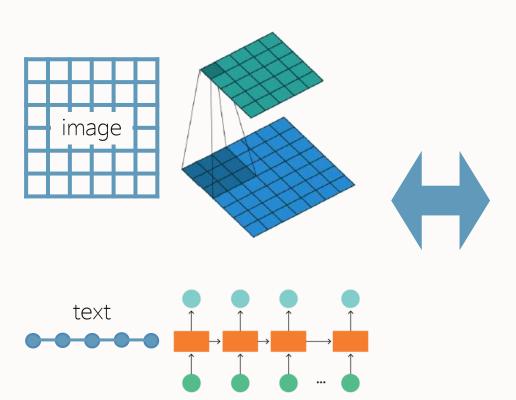
Shallow Encoders

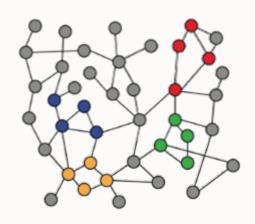
- Use a lookup table consisting of unique embedding of every nodes in graph
- Limitations
 - O(|V|) parameters are needed
 - Inherently Transductive
 - Do not incorporate node features



Node Embeddings

Graph and Modern Deep Learning

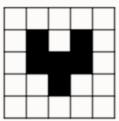


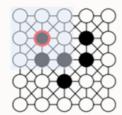


- Arbitrary size
- Complex topological structure
- No fixed node ordering
- Dynamic and multimodal features

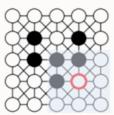
From Image to Graph

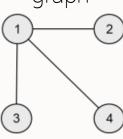
image

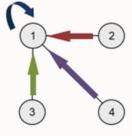




Sparse connection
Receptive field
Weight sharing



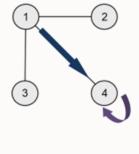




Sparse connection

Receptive field

Weight sharing



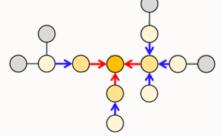
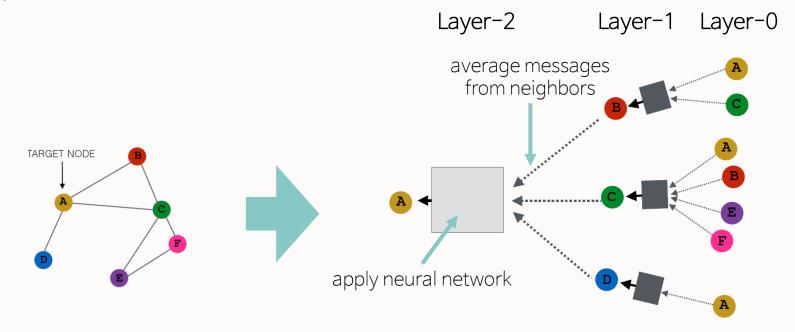


image graph $W_0 \ h_0 \\ W_1 \ h_1 \\ W_2 \ h_2 \\ W_3 \ h_3 \quad \dots$

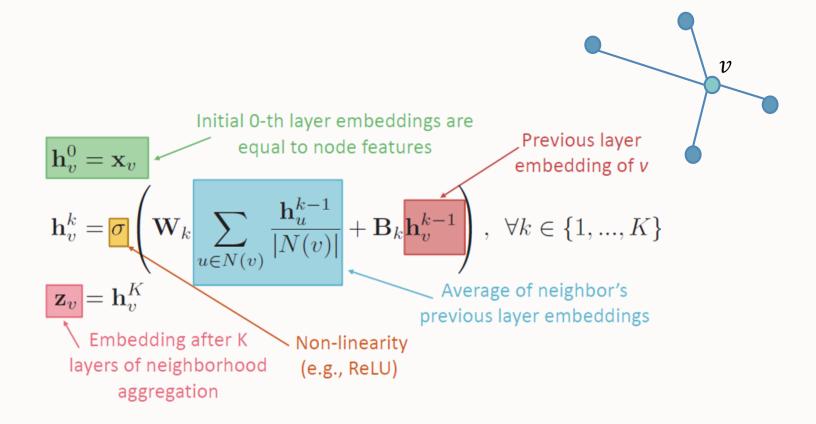
- Transform information at the neighbors and combine it
 - 1) Transform "messages" h_i from neighbors:
 - 2) Add them up

Compute Node Features



- Generate node embeddings based on local network neighborhoods
- Nodes have embeddings at each layer, repeating combine messages from their neighbor using neural networks

Compute Node Features



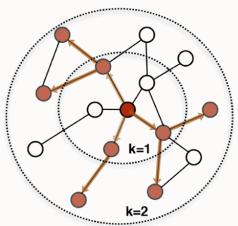
Graph Convolutional Network Limitation of GCN

- For training of the embeddings, model requires that all nodes in the graph are present during training time
- As the number of nodes increases, the matrix becomes larger and computational cost increases accordingly.

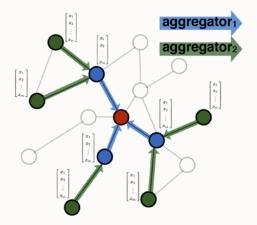
GraphSAGE Definition

- GraphSAGE (**SA**mple and aggre**G**at**E**)
 - Instead of training individual embeddings for each node, generates embeddings by **sampling** features from neighborhoods
 - → mini batch
 - Train a set of aggregator functions that learn to **aggregate** feature information a node's local neighborhood
 - → aggregating

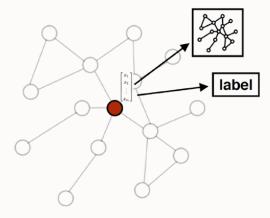
GraphSAGE Mini batch



1. Sample neighborhood



2. Aggregate feature information from neighbors



3. Predict graph context and label using aggregated information

GraphSAGE

Aggregating

$$\mathbf{h}_v^k = \sigma \left(\mathbf{W}_k \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|} + \mathbf{B}_k \mathbf{h}_v^{k-1} \right)$$

Concatenate neighbor embedding and self embedding

$$\mathbf{h}_v^k = \sigma\left(\left[\mathbf{W}_k \cdot \overline{\mathbf{AGG}\left(\{\mathbf{h}_u^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_k \mathbf{h}_v^{k-1}\right]\right)$$
Generalized aggregation

GraphSAGE

Aggregating

Mean

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

Pool

• LSTM

$$AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$

GraphSAGE Algorithm

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

```
Input : Graph \mathcal{G}(\mathcal{V},\mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}

Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}

1 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
2 \mathbf{for} \ k = 1...K \ \mathbf{do}
3 \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do}
4 \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \mathbf{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
5 \mathbf{h}_v^k \leftarrow \sigma \left(\mathbf{W}^k \cdot \mathbf{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
6 \mathbf{end}
7 \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 \mathbf{end}
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

GraphSAGE

Weighting factor in GraphSAGE

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

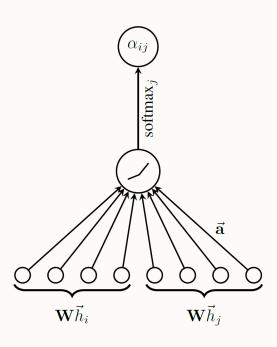
Weighting factor
$$\alpha_{vu} = \frac{1}{|N(v)|}$$

- α_{vu} (importance) is defined explicitly based on the structure properties of graph
- All neighbors $u \in N(v)$ are equally important to node v

• Specify arbitrary importances to different neighbors of each node in the graph

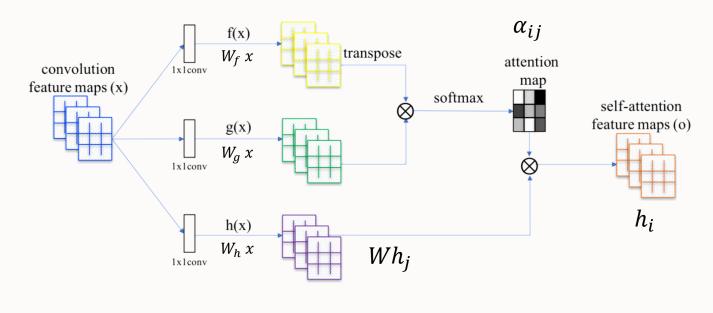
- Compute embedding h_v^k of each node in the graph following an attention strategy:
- → Nodes attend over their neighborhoods' message
- → Implicitly specifying different weights to different nodes

Attention



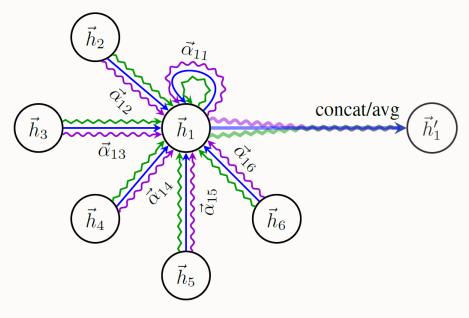
$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

Self attention



$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

Multi-head attention.



$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right) \qquad \vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Graph Attention Network Result

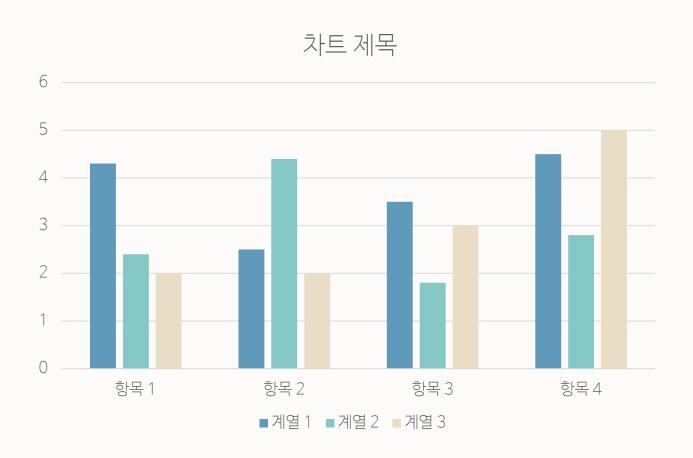
Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed. GCN-64* corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

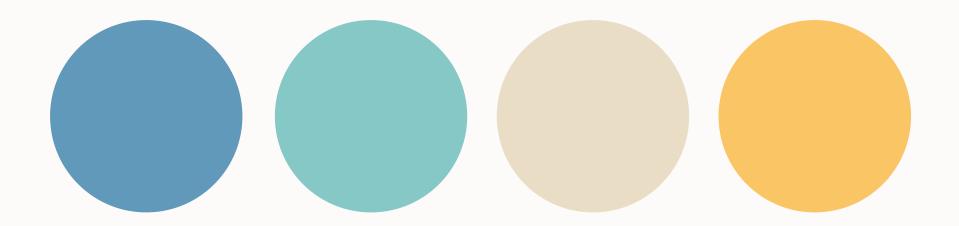
Transductive					
Method	Cora	Citeseer	Pubmed		
MLP	55.1%	46.5%	71.4%		
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%		
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%		
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%		
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%		
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%		
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%		
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%		
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%		
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$		
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	$79.0 \pm 0.3\%$		
GAT (ours)	$\textbf{83.0} \pm 0.7\%$	$\textbf{72.5} \pm 0.7\%$	$\textbf{79.0} \pm 0.3\%$		

Reference

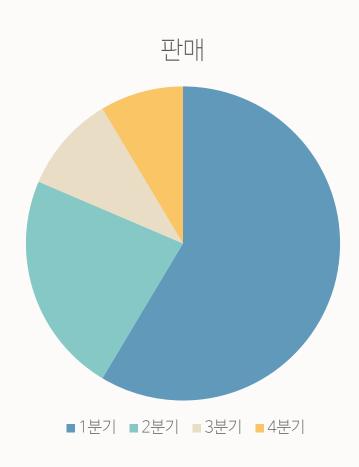
- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
- Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems (pp. 1024–1034).
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
- http://web.stanford.edu/class/cs224w/
- http://dmqm.korea.ac.kr/activity/seminar/267
- https://www.cs.ubc.ca/~lsigal/532S_2018W2/Lecture18a.pdf

제목을입력하세요

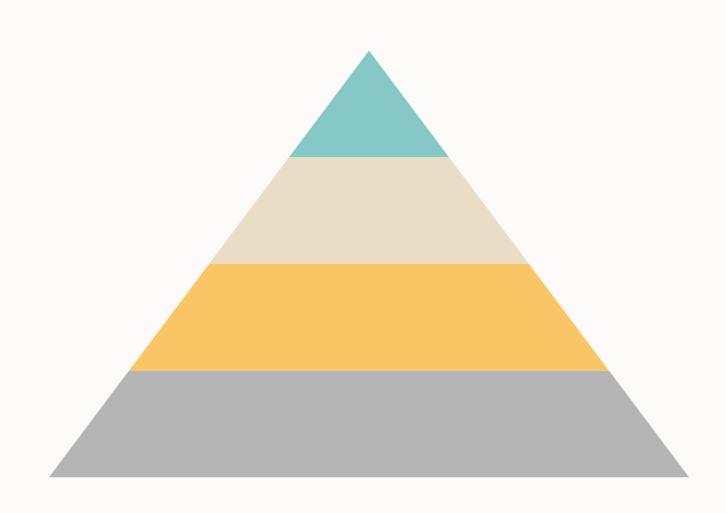


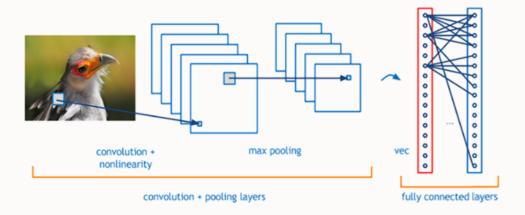


제목을입력하세요

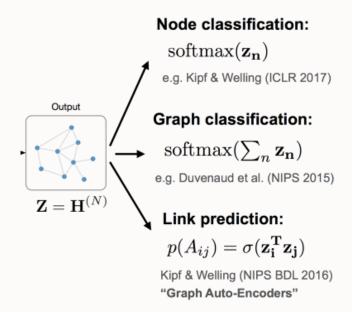


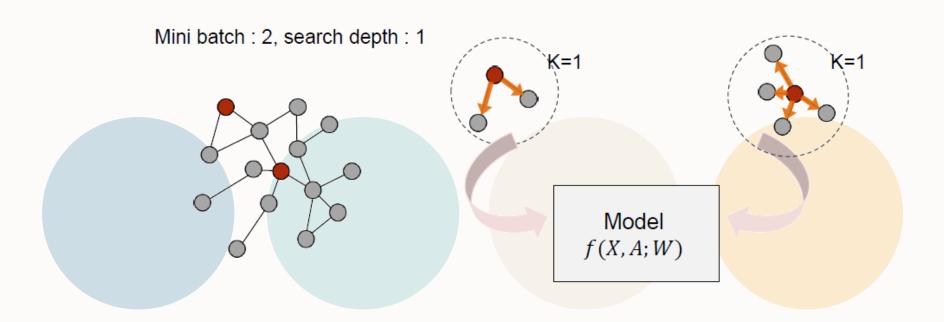
제목을입력하세요





Sparse connection Weight sharing Receptive field





GraphSAGE Mini batch

Mini batch: 2, search depth: 2 K=2 K=2 K=1 K=2 K=2 Model Model Aggregator 1 f(X, A; W)f(X, A; W)Aggregator 2