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Background Information



No Limit Texas Hold’em (NLHE): Game rules

e 2 hole cards

* 5 community cards

* 4 rounds O = ——
0 Pre-Flop a0 '

0 Flop
0 Turn
[I River

* 6 actions O |
[ Check

0 Call

[ Bet

[0 Raise

[0 Fold
[ All-in




LHE vs NLHE

Limit Hold’em

e 2 private cards

e 5 public cards

e 4 rounds of betting
e 3 betting actions

— Check/Call

— Bet/Raise

— Fold

e 10714 game states

No Limit Hold’em (200 BB)

e 2 private cards

e 5 public cards

e 4 rounds of betting

e Up to 200 betting actions

— Check/cCall

— Bet/Raise any size

— Fold

e 107170 game states

— Go has 107160 game states

Source: Nikolai Yakovenko — Columbia University Deep Learning Seminar



State of the Art

e DeepStack (2017): Scalable Approach to Win at Poker
e Libratus (2017): Masters Two-Player Texas Hold "Em

* Pluribus (2019): Superhuman Poker-Playing Bot



Objective: The Ideal NLHE Agent

Using RL, the ideal NLHE agent should possess the ability to produce optimal betting strategy based on:

e Hand strength/potential (*)
* Hole cards
* Community cards

* Opponent Modelling
* Hand strength prediction
* Tight/loose play style
* Passive/aggressive play style
* Past strategy (bluffing?)

* Current game state
* Agent’s stack
* Opponents’ stacks
* Agent’s position
* Opponents’ positions
* Pot size / pot odds



Hand Strength and Potential
EHS = HS x (1 - NPOT) + (1 — HS) x PPOT

where:

« EH S is the Effective Hand Strength

« HS'is the current Hand Strength (i.e. not taking into account potential to improve or deteriorate, depending on upcoming table cards
o NPOT is the Negative POTential (i.e. the probability that our current hand, if the strongest, deteriorates and becomes a losing hand)
o PPOT is the Positive POTential (i.e. the probability that our current hand, if losing, improves and becomes the winning hand)



Opponent Classification

AF<=1 AF>1
Loose Loose

° =

e Passive Aggressive

% GP<28 Tlght Tlght.
Passive Aggressive

GP = % of hands participated
AF = Num Raises/Num Calls.

MOST
HANDS

Number
Starting
Hands
Played

FEW
HANDS

CALLS & CHECKS
Frequently

Bet/Raise
Size and Frequency

BETS & RAISES
Frequently



Playing Position and Pot odds, and Stack management

A player’s position strongly affects his betting strategy

* Pot odds calculation in relation to hand strength is important in determining
whether to participate in a hand.

* A player’s stack size also strongly affects his betting strategy



PokerBot

Hand Strength Reinforcement Learning

Angela Ramirez, Solomon Reinman, Dr. Narges Norouzi
IEEE, 2019



Approach

* THE-specific RL agent
* Handstrength-dependent betting strategy (*)

* Actor-Critic Model
* Include specific domain knowledge in unison with reinforcement learning

e Sub-component solving



Data

* PyPokerEngine

Simulations (cards, number of players, pot size)
Built-in bots
Hand strength calculation

* Example input at a given point in game:

Hole cards: Q@@, /@

Table cards: 768, 1088, 109
Num opponents: 3

Stack: 70

Pot: 135



Strategy: Action-reward table learning

‘old Call Raise

Low 11 S12 813

Mid 521 922 S23

Mld-Hl’h A K S32 Sa (t) o (t-l) - (t) ; (t—l)

Hioh £ 'il .i .5.1 S'ij = S'ij ~+- (U —) )’
Y S41 S42 S43

a = max; (s;) ,

Low [0, 0.25]

Mid [0.25, 0.50]
Mid-High [0.50, 0.75]
High [0.75, 1.00]



Implementation: Three variations

Play against pre-built PyPokerEngine bots:

- CallBot: calls the current bet.

- BloggerBot: uses PyPokerEngine’s
handEval() function to choose the action
most likely to yield a positive result at

2) GeneralBot: each stage of the game.
1 action-reward table for all game phases

1) TableBot:

Represents a larger input space.
4 separate action-reward tables, specific to each game phaH
preflop, flop, turn, and river

3) TableBotNNQ:

Similar strategy with TableBot Play I'cl\gainStI
1NN of 3 layers - CallBot
* |nput vector: 18 nodes ‘ - BloggerBot
= Dense layer: 48 nodes - TableBot
= Softmax output layer - GeneralBot

» Learningrates: 0.01,0.1, 1, 2,5, and 10
» QOptimization functions: gradient descent, Adam optimizer



Results and Analysis: General Bot
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Results and Analysis: Table Bot
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Results and Analysis: TableBotNNQ,

CallBot Adam
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Results and Analysis: Action Preference
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Results and Analysis: Implications, Conclusions & Future Work

* In a short amount of time, GeneralBot was able to learn more quickly than TableBot against CallBot
and BloggerBot, achieving higher stack average

* Given more time, TableBot begins to approach a similar level of performance
* Both GeneralBot and TableBot show increased consistency in performance over time
* Agent with more input parameters is able to create a more diverse output space

= Though simple, the approach has produced promising results, given time.

= Neural network structure is useful in creating a hierarchical model that treats certain aspects of the
input space (opponent action, cards available, etc.) independently and plays accordingly



