Texas Hold’Em and Reinforcement Learning

Speaker: Anh Tran

Background Information

No Limit Texas Hold’em (NLHE): Game rules

e 2 hole cards

* 5 community cards

* 4 rounds O = ——
0 Pre-Flop a0 '

0 Flop
0 Turn
[I River

* 6 actions O |
[Check

0 Call

[Bet

[0 Raise

[0 Fold
[All-in

LHE vs NLHE

Limit Hold’em

e 2 private cards

e 5 public cards

e 4 rounds of betting
e 3 betting actions

— Check/Call

— Bet/Raise

— Fold

e 10714 game states

No Limit Hold’em (200 BB)

e 2 private cards

e 5 public cards

e 4 rounds of betting

e Up to 200 betting actions

— Check/cCall

— Bet/Raise any size

— Fold

e 107170 game states

— Go has 107160 game states

Source: Nikolai Yakovenko — Columbia University Deep Learning Seminar

State of the Art

e DeepStack (2017): Scalable Approach to Win at Poker
e Libratus (2017): Masters Two-Player Texas Hold "Em

* Pluribus (2019): Superhuman Poker-Playing Bot

Objective: The Ideal NLHE Agent

Using RL, the ideal NLHE agent should possess the ability to produce optimal betting strategy based on:

e Hand strength/potential (*)
* Hole cards
* Community cards

* Opponent Modelling
* Hand strength prediction
* Tight/loose play style
* Passive/aggressive play style
* Past strategy (bluffing?)

* Current game state
* Agent’s stack
* Opponents’ stacks
* Agent’s position
* Opponents’ positions
* Pot size / pot odds

Hand Strength and Potential
EHS = HS x (1 - NPOT) + (1 — HS) x PPOT

where:

« EH S is the Effective Hand Strength

« HS'is the current Hand Strength (i.e. not taking into account potential to improve or deteriorate, depending on upcoming table cards
o NPOT is the Negative POTential (i.e. the probability that our current hand, if the strongest, deteriorates and becomes a losing hand)
o PPOT is the Positive POTential (i.e. the probability that our current hand, if losing, improves and becomes the winning hand)

Opponent Classification

AF<=1 AF>1
Loose Loose

° =

e Passive Aggressive

% GP<28 Tlght Tlght.
Passive Aggressive

GP = % of hands participated
AF = Num Raises/Num Calls.

MOST
HANDS

Number
Starting
Hands
Played

FEW
HANDS

CALLS & CHECKS
Frequently

Bet/Raise
Size and Frequency

BETS & RAISES
Frequently

Playing Position and Pot odds, and Stack management

A player’s position strongly affects his betting strategy

* Pot odds calculation in relation to hand strength is important in determining
whether to participate in a hand.

* A player’s stack size also strongly affects his betting strategy

PokerBot

Hand Strength Reinforcement Learning

Angela Ramirez, Solomon Reinman, Dr. Narges Norouzi
IEEE, 2019

Approach

* THE-specific RL agent
* Handstrength-dependent betting strategy (*)

* Actor-Critic Model
* Include specific domain knowledge in unison with reinforcement learning

e Sub-component solving

Data

* PyPokerEngine

Simulations (cards, number of players, pot size)
Built-in bots
Hand strength calculation

* Example input at a given point in game:

Hole cards: Q@@, /@

Table cards: 768, 1088, 109
Num opponents: 3

Stack: 70

Pot: 135

Strategy: Action-reward table learning

‘old Call Raise

Low 11 S12 813

Mid 521 922 S23

Mld-Hl’h A K S32 Sa (t) o (t-l) - (t) ; (t—l)

Hioh £ 'il .i .5.1 S'ij = S'ij ~+- (U —))’
Y S41 S42 S43

a = max; (s;) ,

Low [0, 0.25]

Mid [0.25, 0.50]
Mid-High [0.50, 0.75]
High [0.75, 1.00]

Implementation: Three variations

Play against pre-built PyPokerEngine bots:

- CallBot: calls the current bet.

- BloggerBot: uses PyPokerEngine’s
handEval() function to choose the action
most likely to yield a positive result at

2) GeneralBot: each stage of the game.
1 action-reward table for all game phases

1) TableBot:

Represents a larger input space.
4 separate action-reward tables, specific to each game phaH
preflop, flop, turn, and river

3) TableBotNNQ:

Similar strategy with TableBot Play I'cl\gainStI
1NN of 3 layers - CallBot
* |nput vector: 18 nodes ‘ - BloggerBot
= Dense layer: 48 nodes - TableBot
= Softmax output layer - GeneralBot

» Learningrates: 0.01,0.1, 1, 2,5, and 10
» QOptimization functions: gradient descent, Adam optimizer

Results and Analysis: General Bot

200
bot
1804 —— General vs Blog
---- General vs. Call

1 [o General vs Table
'6 B
E 140- el ;-,-; -)'Q-——n-.fn.’:::::.:::: ...
S 2 ,’ \’ \I‘ ‘V\ ; ,»09 " ”Oc T v’

\/ \,\,r/ A ST e
120- \“v/’
1 OO‘VMA e —
80 1 . 2 1 ™
10 ° 10 10

time

Results and Analysis: Table Bot

200
bot
o —— Table vs. Blog
e I |
. Table vs. Call
”\ Table VS. General
/’ \
1404 ,/ v,
j‘% i \\/’.\‘ e
k7] 1204 \ \,’I\I’ \\,l‘\'vwsll\\.,v‘-v“ﬁ.o"\s..;\.v, o panel e N P .
100- //
80-///
60- ooo “and
| — N
10’ 2 - |

time

Results and Analysis: TableBotNNQ,

CallBot Adam

100 . Goadient
GeneralBot Adam
EE Gradient

0 0.01 0.1 i1 5 10
0 0.01 0.1 1 5 10

Learning Rate

N
o

=3

=3
@
o

@
=]

D

=]

Average Stack
2]
o
Average Stack
o
o

n o
o o
o

Learning Rate

: - e s . Fig. 5. Average stack of TableBotNNQ vs. CallBot, with different learning
Fig. 3. A*erage .sm(.'k ()j‘ TablgBorNNQ vs. GeneralBot, with different learning rates and optimization function
rates and optimization function
TableBot Adam
BloggerBot 100 B Godent

=2}
=]

&
o
Average Stack

Average Stack

n
o

80 . 80
60
40
20
0 0.01 0.1 1 5 10 ¢ 0.01 01 1 5 10

Learning Rate Learning Rate

Fig. 4. Average stack of TableBotNNQ vs. BloggerBot, with different learning
rates and optimization function

Fig. 6. Average stack of TableBotNNQ vs. TableBot, with different learning
rates and optimization function

Results and Analysis: Action Preference

Table General mm fold
B raise

. call
10 3

—

o

w
A 1 11

Amounts
N
llll_l 4 2 4 llllll

oul
o

10'4

low mid mid_high high low mid mid_high high
Rates Rates

Results and Analysis: Implications, Conclusions & Future Work

* In a short amount of time, GeneralBot was able to learn more quickly than TableBot against CallBot
and BloggerBot, achieving higher stack average

* Given more time, TableBot begins to approach a similar level of performance
* Both GeneralBot and TableBot show increased consistency in performance over time
* Agent with more input parameters is able to create a more diverse output space

= Though simple, the approach has produced promising results, given time.

= Neural network structure is useful in creating a hierarchical model that treats certain aspects of the
input space (opponent action, cards available, etc.) independently and plays accordingly

