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Background Information



No Limit Texas Hold’em (NLHE): Game rules

• 2 hole cards
• 5 community cards
• 4 rounds

� Pre-Flop
� Flop
� Turn
� River

• 6 actions
� Check
� Call
� Bet
� Raise
� Fold
� All-in



LHE vs NLHE

Limit Hold’em 

• 2 private cards
• 5 public cards 
• 4 rounds of betting
• 3 betting actions 
– Check/Call 
– Bet/Raise 
– Fold 
• 10^14 game states

No Limit Hold’em (200 BB) 

• 2 private cards 
• 5 public cards 
• 4 rounds of betting 
• Up to 200 betting actions
 – Check/Call 
 – Bet/Raise any size
 – Fold 
• 10^170 game states 
– Go has 10^160 game states

Source: Nikolai Yakovenko – Columbia University Deep Learning Seminar

  



State of the Art

• DeepStack (2017): Scalable Approach to Win at Poker

• Libratus (2017): Masters Two-Player Texas Hold ’Em

• Pluribus (2019): Superhuman Poker-Playing Bot



Objective: The Ideal NLHE Agent

Using RL, the ideal NLHE agent should possess the ability to produce optimal betting strategy based on:

• Hand strength/potential (*)
• Hole cards 
• Community cards

• Opponent Modelling
• Hand strength prediction
• Tight/loose play style 
• Passive/aggressive play style
• Past strategy (bluffing?)

• Current game state
• Agent’s stack
• Opponents’ stacks
• Agent’s position
• Opponents’ positions
• Pot size / pot odds



Hand Strength and Potential



Opponent Classification

GP = % of hands participated 
AF = Num Raises/Num Calls.



Playing Position and Pot odds, and Stack management

• A player’s position strongly affects his betting strategy

• Pot odds calculation in relation to hand strength is important in determining 
whether to participate in a hand.

• A player’s stack size also strongly affects his betting strategy



PokerBot

Hand Strength Reinforcement Learning

Angela Ramirez, Solomon Reinman, Dr. Narges Norouzi

IEEE, 2019 



Approach

• THE-specific RL agent
• Handstrength-dependent betting strategy (*)

• Actor-Critic Model

• Include specific domain knowledge in unison with reinforcement learning

• Sub-component solving



Data

• PyPokerEngine

• Example input at a given point in game:

Hole cards: Q♥, J♥
Table cards: 7♠, 10♠, 10♥
Num opponents: 3
Stack: 70
Pot: 135

Simulations (cards, number of players, pot size)
Built-in bots
Hand strength calculation



Strategy: Action-reward table learning

Low [0, 0.25]
Mid  [0.25, 0.50]
Mid-High [0.50, 0.75]
High [0.75, 1.00] 



Implementation: Three variations

1) TableBot: 
Represents a larger input space. 
4 separate action-reward tables, specific to each game phase: 
preflop, flop, turn, and river

2) GeneralBot: 
1 action-reward table for all game phases

3) TableBotNNQ:
Similar strategy with TableBot
1NN of 3 layers

▪ Input vector: 18 nodes
▪ Dense layer: 48 nodes
▪ Softmax output layer
▪ Learning rates: 0.01, 0.1, 1, 2, 5, and 10
▪ Optimization functions: gradient descent, Adam optimizer

Play against pre-built PyPokerEngine bots:
- CallBot: calls the current bet. 
- BloggerBot: uses PyPokerEngine’s 

handEval() function to choose the action 
most likely to yield a positive result at 
each stage of the game. 

Play against:
- CallBot
- BloggerBot
- TableBot
- GeneralBot



Results and Analysis: General Bot



Results and Analysis: Table Bot



Results and Analysis: TableBotNNQ



Results and Analysis: Action Preference



Results and Analysis: Implications, Conclusions & Future Work

• In a short amount of time, GeneralBot was able to learn more quickly than TableBot against CallBot 
and BloggerBot, achieving  higher stack average

• Given more time, TableBot begins to approach a similar level of performance

• Both GeneralBot and TableBot show increased consistency in performance over time

• Agent with more input parameters is able to create a more diverse output space 

⇒ Though simple, the approach has produced promising results, given time.

⇒ Neural network structure is useful in creating a hierarchical model that treats certain aspects of the 
input space (opponent action, cards available, etc.) independently and plays accordingly


