Convolutional Neural Networks for Sentence Classification

Daeung Kim

April, 05, 2018

Dongguk University

Artificial Intelligence Laboratory

dukim@dongguk.edu

Contents

- o. Basic NLP
- 1. Introduction
- 2. Model
- 3. Data and Experimental Setup
- 4. Results and Discussion
- 5. Conclusion

Definition of NLP Tokenizing Embedding

Definition of NLP

How to program computers to process and analyze of natural language data.

Tokenizing

Time is not gold, but it is yourself.

- Alphabet : "T", "i", "m", "e", "s", "n", "o", "t", "g", "l", "d", "b", "υ", "f"
- Word: "Time", "is", "not", "gold", "but", "it", "yourself"
- Sentence: "Time is not gold, but it is yourself."

Word Embedding

- Word Representation to make machine understand Natural Language.
- Vector representations of a particular word

One-hot-encoding

```
- "Time" : [1, 0, 0, 0, 0, 0, 0]

- "is" : [0, 1, 0, 0, 0, 0, 0]

- "not" : [0, 0, 1, 0, 0, 0, 0]

- "gold" : [0, 0, 0, 1, 0, 0, 0]

- "but" : [0, 0, 0, 0, 0, 1, 0, 0]

- "it" : [0, 0, 0, 0, 0, 0, 1, 0]
```

One-hot-encoding

```
"Time" : [1, 0, 0, 0, 0, 0, 0] Sparse
"is" : [0, 1, 0, 0, 0, 0, 0]
```

"gold" Idt can't represent mean of words.

```
- "but" : [ o, o, o, o, 1, o, o]
```

- "yourself" : [o, o, o, o, o, o, 1]

Word2Vec: (o) Basic

Word2Vec: (1) CBOW

Time is not ____ but it is yourself

W = 1 (window size)

Word2Vec: (2) Skip-gram

Time is ___ gold ___ it is yourself W = 1 (window size)

o. Basic NLP Word2Vec : (2) Skip-gram Dense 8 it ilt can represent rafaifa Taifa Semantic and Semantic mean of words.

Semantic & Synthetic mean of words.

1. Introduction

Background of this paper

- (1) Much of NLP work with deep-learning is based on Word Embedding represented by Neural Language Model
- (2) CNN have been shown to be **effective** for NLP too.
- (3) In Image Classification, pre-trained feature extractors perform well on a variety of tasks (Razavian et al., 2014).

1. Introduction

Background of this paper

What if we design the NLP model with CNN and Pre-trained word vector?

Figure 1: Model architecture with two channels for an example sentence.

Model Architecture (1) Representation of Sentence

Model Architecture (2) Convolution Operation

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b})$$

Model Architecture (3) Feature map

$$c = [c_1, c_2, ..., c_i, ..., c_{n-h+1}]$$

Model Architecture (4) Max-over-time pooling

Model Architecture (5) Dropout and Softmax output

1. Regularization

1. Dropout

2. constraint on l_2 - norms of weight vectors

MR : Movie reviews(pos / neg)

SST-1: vpos / pos / neu / neg / vneg

• SST-2 : Same as MR

Subj : Sub / Obj

• TREC : Classifying a Q into 6 Q types(person, location, etc.

CR : Customer Reviews of product (pos / neg)

MPQA : Opinion polarity detection.

Data	c	l	N	V	$ V_{pre} $	Test
MR	2	20	10662	18765	16448	CV
SST-1	5	18	11855	17836	16262	2210
SST-2	2	19	9613	16185	14838	1821
Subj	2	23	10000	21323	17913	CV
TREC	6	10	5952	9592	9125	500
CR	2	19	3775	5340	5046	CV
MPQA	2	3	10606	6246	6083	CV

1. Hyper-parameters and Training

- Activation function: ReLU
- Filter windows (h): 3, 4, 5 with 100 feature maps each
- Dropout rate (*p*) : 0.5
- l_2 constraint (s): 3
- Mini-batch size : 50

Chosen via a grid search on the SST-2 dev set.

1. Hyper-parameters and Training

- Early Stopping
- 10-fold CV
- SGD over shuffled mini-batches
- Adadelta

2. Pre-trained Word Vectors: word2vec

- Word2vec
- 100 billion words from Google News
- 300 Dimension
- trained using the CBOW architecture

3. Model Variations

- CNN-rand
- CNN-static
- CNN-non-static
- CNN-multichannel

- Pre-trained vectors are
- 1) good
- 2) 'universal' feature extractors
- 3) can be utilized across datasets

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	-	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	-	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	-	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	_

1. Multichannel vs Single Channel Models

- What they expected: Prevent Overfitting
- But the results are mixed.
- Further work on regularizing the fine-tuning process is warranted.

2. Static vs. Non-static Representations

- Fine tuned on the SST2 dataset.
- In Pre-trained word2vec, bad ≈ good
- In Non-static channel, bad ≈ terrible

For the word not in the set

- "!" ≈ effusive expressions
- "," ≈ conjunctive

	Most Similar Words for					
	Static Channel	Non-static Channel				
	good	terrible				
bad	terrible	horrible				
	horrible	lousy				
	lousy	stupid				
good	great	nice				
	bad	decent				
	terrific	solid				
	decent	terrific				
n't	os	not				
	ca	never				
	ireland	nothing				
	wo	neither				
!	2,500	2,500				
	entire	lush				
	jez,	beautiful				
	changer	terrific				
	decasia	but				
,	abysmally	dragon				
	demise	a				
	valiant	and				

3. Further Observations

- Achieved more accuracy than existing Max-TDNN model(37.4% -> 45.0%)
- Dropout proved to be such a good regularizer
- When randomly initializing words not in word2vec, we obtained slight improvements by sampling each dimension from U[-a, a] where have the same variance as the pre-trained ones.
- Word2vec trained on google news gave far superior performance than word2vec trained on Wikipedia.
- · Adadelta gave similar results to Adagrad but required fewer epochs.

5. Conclusion

•Unsupervised pre-training of word vectors is important ingredient in deep learning for NLP.

6. Reference

- https://www.slideshare.net/keunbongkwak/gloveglobal-vectors-for-word-representation
- https://shuuki4.wordpress.com/2016/01/27/word2vec-%EA%B4%80%EB%A0%A8-%EC%9D%B4%EB%A1%A0-%EC%A0%95%EB%A6%AC/
- https://wikidocs.net/22660
- https://www.quantumdl.com/entry/1%EC%A3%BC%EC%Bo%A8-Convolutional-Neural-Networks-for-Sentence-Classification
- https://dreamgonfly.github.io/machine/learning,/natural/language/processing/2017/08/16/word2vec_explained.
 html
- https://datascienceschool.net/view-notebook/6927bogo6f884a67boda931od3a581ee/
- https://www.youtube.com/watch?v=mPxi1YgU9Zw
- https://github.com/dennybritz/cnn-text-classification-tf
- http://docs.likejazz.com/cnn-text-classification-tf/
- <텐서플로와 머신러닝으로 시작하는 자연어처리>, 위키북스, 전창욱 외 2명