

Modern Data Augmentation Techniques

Mixup and Cutmix 중심으로

Park, MinKyu

2020.09.04

Dongguk University

Artificial Intelligence Laboratory

Data Augmentation

- Data augmentation significantly increases the diversity of data available for training our models, <u>without actually</u> <u>collecting new data samples</u>.
- Simple image data augmentation techniques like <u>flipping</u>, <u>random crop</u>, <u>and random rotation</u> are commonly used to train large models.

Overview of the results of Mixup, Cutout, and CutMix.

mixup: Beyond Empirical Risk Minimization

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz https://arxiv.org/abs/1710.09412

Abstract

- Neural networks can exhibit undesirable characteristics: memorization and sensitivity to adversarial examples
- Paper proposes a *generic* data augmentation technique to address this
- Claims:
 - reduces the memorization of corrupt labels
 - increases the robustness to adversarial examples
 - stabilizes the training of generative adversarial networks

참고 : adversarial example

57.7% confidence

99.3% confidence

Learning Theory – Empirical Risk Minimization

- Supervised learning: find a **function** f(x) that maps x to y
- We find this function by penalizing errors that our model makes

$$R(f) = \int \ell(f(x), y) \mathrm{d}P(x, y).$$

Expected risk: calculate loss over all *possible* data.

$$R_{\delta}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

Empirical risk: calculate loss over all *available* data.

Learning Theory – Vicinal Risk Minimization

 Let's improve our approximation of the true distribution by sampling data from *neighborhoods* (i.e. vicinities) around our available data.

$$R_{\nu}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(f(\tilde{x}_i), \tilde{y}_i).$$

This allows to explore more of the feature space when learning.

You're probably already doing vicinal risk minimization – it's called **data augmentation**!

- Linearly interpolate between existing data
- This is kind of similar to SMOTE except we interpolate the targets too!

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j,$$

참고

• Synthetic Minority Over-sampling Technique (SMOTE)

This leads to some nice properties

(b) Norm of the gradients of the model w.r.t. input in-between training data, evaluated at $x = \lambda x_i + (1 - \lambda)x_j$. The model trained with *mixup* has smaller gradient norms.

(b) Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

Image data

Dataset	Model	ERM	mixup
	PreAct ResNet-18	5.6	4.2
CIFAR-10	WideResNet-28-10	3.8	2.7
	DenseNet-BC-190	3.7	2.7
	PreAct ResNet-18	25.6	21 .1
CIFAR-100	WideResNet-28-10	19.4	17.5
	DenseNet-BC-190	19.0	16.8

(a) Test errors for the CIFAR experiments.

(b) Test error evolution for the best ERM and mixup models.

200

Figure 3: Test errors for ERM and mixup on the CIFAR experiments.

Corrupted labels

Label corruption	Method	Test error		Training error	
		Best	Last	Real	Corrupted
	ERM	12.7	16.6	0.05	0.28
20%	ERM + dropout ($p = 0.7$)	8.8	10.4	5.26	83.55
	mixup ($\alpha = 8$)	5.9	6.4	2.27	86.32
	mixup + dropout ($\alpha = 4, p = 0.1$)	6.2	6.2	1.92	85.02
	ERM	18.8	44.6	0.26	0.64
50%	ERM + dropout ($p = 0.8$)	14.1	15.5	12.71	86.98
	mixup ($\alpha = 32$)	11.3	12.7	5.84	85.71
	mixup + dropout ($\alpha = 8, p = 0.3$)	10.9	10.9	7.56	87.90
	ERM	36.5	73.9	0.62	0.83
800	ERM + dropout ($p = 0.8$)	30.9	35.1	29.84	86.37
00%	mixup ($\alpha = 32$)	25.3	30.9	18.92	85.44
	mixup + dropout ($\alpha = 8, p = 0.3$)	24.0	24.8	19.70	87.67

Table 2: Results on the corrupted label experiments for the best models.

Speech data

Model	Method	Validation set	Test set
	ERM	9.8	10.3
LeNet	mixup ($\alpha = 0.1$)	10.1	10.8
	mixup ($lpha=0.2$)	10.2	11.3
	ERM	5.0	4.6
VGG-11	mixup ($\alpha = 0.1$)	4.0	3.8
	mixup ($lpha=0.2$)	3.9	3.4

Figure 4: Classification errors of ERM and mixup on the Google commands dataset.

Tabular data

Dataset	ERM	mixup	Dataset	ERM	mixup
Abalone	74.0	73.6	Htru2	2.0	2.0
Arcene	57.6	48.0	Iris	21.3	17.3
Arrhythmia	56.6	46.3	Phishing	16.3	15.2

Table 4: ERM and mixup classification errors on the UCI datasets.

GAN stabilization

ERM GAN	mixup GAN ($\alpha = 0.2$)		
	副國國問題		
	通常の命令		

Figure 5: Effect of mixup on stabilizing GAN training at iterations 10, 100, 1000, 10000, and 20000.

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo Clova AI Research, NAVER Corp.

https://arxiv.org/abs/1905.04899

Image Classification

Regional dropout strategy for "occlusion-robust" classifier^[a, b]

[a] Devries et al., "Improved regularization of convolutional neural networks with cutout", arXiv 2017.[b] Zhong et al., "Random erasing data augmentation", arXiv 2017.

CutMix in a Nutshell

Target Label Cat = 0.4 Dog = 0.6

- Cut and paste two images and labels.
- In this way, the classifier learns "what" and "where" objects are in the image.

CutMix in a Nutshell

Overview of the results of Mixup, Cutout, and CutMix.

- Unlike Cutout, CutMix uses all input pixels for training.
- Unlike Mixup, CutMix presents realistic local image patches.
- CutMix is simple: only 20 lines of pytorch code.

Let $x \in \mathbb{R}^{W \times H \times C}$ and y denote a training image and its label, respectively. The goal of CutMix is to generate a new training sample (\tilde{x}, \tilde{y}) by combining two training samples (x_A, y_A) and (x_B, y_B) . The generated training sample (\tilde{x}, \tilde{y}) is used to train the model with its original loss function. We define the combining operation as

$$\widetilde{x} = \mathbf{M} \odot x_A + (\mathbf{1} - \mathbf{M}) \odot x_B
\widetilde{y} = \lambda y_A + (1 - \lambda) y_B,$$
(1)

where $\mathbf{M} \in \{0,1\}^{W \times H}$ denotes a binary mask indicating where to drop out and fill in from two images, 1 is a binary mask filled with ones, and \odot is element-wise multiplication. Like Mixup [48], the combination ratio λ between two data points is sampled from the beta distribution Beta (α, α) . In our all experiments, we set α to 1, that is λ is sampled from the uniform distribution (0, 1). Note that the major difference is that CutMix replaces an image region with a patch from another training image and generates more locally natural image than Mixup does. To sample the binary mask \mathbf{M} , we first sample the bounding box coordinates $\mathbf{B} = (r_x, r_y, r_w, r_h)$ indicating the cropping regions on x_A and x_B . The region \mathbf{B} in x_A is removed and filled in with the patch cropped from \mathbf{B} of x_B .

In our experiments, we sample rectangular masks M whose aspect ratio is proportional to the original image. The box coordinates are uniformly sampled according to:

$$r_x \sim \text{Unif } (0, W), \quad r_w = W\sqrt{1-\lambda},$$

$$r_y \sim \text{Unif } (0, H), \quad r_h = H\sqrt{1-\lambda}$$
(2)

making the cropped area ratio $\frac{r_w r_h}{WH} = 1 - \lambda$. With the cropping region, the binary mask $\mathbf{M} \in \{0, 1\}^{W \times H}$ is decided by filling with 0 within the bounding box **B**, otherwise 1.

Overview of the results

Image	ResNet-50	Mixup [48]	Cutout [3]	CutMix
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.6
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.3)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

Table 1: Overview of the results of Mixup, Cutout, and our CutMix on ImageNet classification, ImageNet localization, and Pascal VOC 07 detection (transfer learning with SSD [24] finetuning) tasks. Note that CutMix significantly improves the performance on various tasks.

Experiments

ImageNet Classification

Model	# Params	Top-1 Err (%)	Top-5 Err (%)
ResNet-152*	60.3 M	21.69	5.94
ResNet-101 + SE Layer* [15]	49.4 M	20.94	5.50
ResNet-101 + GE Layer* [14]	58.4 M	20.74	5.29
ResNet-50 + SE Layer* [15]	28.1 M	22.12	5.99
ResNet-50 + GE Layer* [14]	33.7 M	21.88	5.80
ResNet-50 (Baseline)	25.6 M	23.68	7.05
ResNet-50 + Cutout [3]	25.6 M	22.93	6.66
ResNet-50 + StochDepth [17]	25.6 M	22.46	6.27
ResNet-50 + Mixup $[48]$	25.6 M	22.58	6.40
ResNet-50 + Manifold Mixup [42]	25.6 M	22.50	6.21
ResNet-50 + DropBlock* [8]	25.6 M	21.87	5.98
ResNet-50 + Feature CutMix	25.6 M	21.80	6.06
ResNet-50 + CutMix	25.6 M	21.40	5.92

Table 3: ImageNet classification results based on ResNet-50 model. '*' denotes results reported in the original papers.

Experiments

Weakly-supervised object localization (WSOL) on CUB and ImageNet.

Method	CUB200-2011 Loc Acc (%)	ImageNet Loc Acc (%)
VGG-GAP + CAM [52]	37.12	42.73
VGG-GAP + ACoL* [49]	45.92	45.83
VGG-GAP + ADL* [2]	52.36	44.92
GoogLeNet + HaS* [33]	-	45.21
InceptionV3 + SPG* $[50]$	46.64	48.60
VGG-GAP + Mixup [48]	41.73	42.54
VGG-GAP + Cutout [3]	44.83	43.13
VGG-GAP + CutMix	52.53	43.45
ResNet-50 + CAM [52]	49.41	46.30
ResNet-50 + Mixup [48]	49.30	45.84
ResNet-50 + Cutout [3]	52.78	46.69
ResNet-50 + CutMix	54.8 1	47.25

Table 9: Weakly supervised object localization results on CUB200-2011 and ImageNet. * denotes results reported in the original papers.

Transfer Learning

Backhone	ImageNet Cla	Ι	Detection	Image Captioning	
Natwork	Top-1 Error (%)	SSD [24]	Faster-RCNN [30]	NIC [43]	NIC [43]
INCLWOIK		(mAP)	(mAP)	(BLEU-1)	(BLEU-4)
ResNet-50 (Baseline)	23.68	76.7 (+0.0)	75.6 (+0.0)	61.4 (+0.0)	22.9 (+0.0)
Mixup-trained	22.58	76.6 <mark>(-0.1)</mark>	73.9 (-1.7)	61.6 (+0.2)	23.2 (+0.3)
Cutout-trained	22.93	76.8 (+0.1)	75.0 (-0.6)	63.0 (+1.6)	24.0 (+1.1)
CutMix-trained	21.40	77.6 (+0.9)	76.7 (+1.1)	64.2 (+2.8)	24.9 (+2.0)

Table 10: Impact of CutMix on transfer learning of pretrained model to other tasks, object detection and image captioning.

기타 : GridMask

Table 2. This table summarizes the result of ImageNet. We can see our model improves the baseline of various models.

References

[1] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz, "mixup: Beyond empirical risk minimization," in ICLR, 2018.

[2] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo, "Cutmix: Regularization strategy to train strong classifiers with localizable features," in ICCV, 2019.

[3] <u>https://sangdooyun.github.io/papers/yun2019iccv_talk.pdf</u>

[4] <u>https://app.wandb.ai/authors/tfaugmentation/reports/Modern-Data-Augmentation-Techniques-for-Computer-Vision--VmlldzoxODA3NTQ</u>

[5] <u>https://towardsdatascience.com/cutmix-a-new-strategy-for-data-augmentation-bbc1c3d29aab</u>

[6] <u>https://www.kaggle.com/saife245/cutmix-vs-mixup-vs-gridmask-vs-cutout</u>

[7] GridMask Data Augmentation <u>https://arxiv.org/abs/2001.04086v1</u>