

Fully-Convolutional Siamese Networks for Object Tracking

Luca Bertinetto Jack Valmadre Joao F.Henriques Andrea Vedaldi Philip H. S. Torr Department of Engineering Science, University of Oxford

swkim@dongguk.edu sunwoo KIm

Index

- 1. Introduction
- 2. Model Architecture
- 3. Experiment

Introduction - What is the Visual Object Tracking?

- Localizing the target in the video
- Given arbitrary target
- Class-agnostic
- Hard Negatives

Introduction - How to track the object?

- Find the most *similar* patch in *T* frame based on *T-1* frame target
 - it needs robustness to object deformations.

Introduction - How to define similarity?

Introduction - VOT roadmap

Introduction - Correlation-filter based

Introduction - Correlation-filter based

- First step
 - Find h(filter) from i(input image) & g(given output)
- N step
 - Filtering input image & find output which has the highest response
 - Update filter_
 - Iteration...

$$H_{i}^{*} = \eta \frac{G_{i} \odot F_{i}^{*}}{F_{i} \odot F_{i}^{*}} + (1 - \eta)H_{i-1}^{*}$$

Model Architecture

Model Architecture - Input

Two inputs

• Exampler (z)

-Randomly choiced in labled objects *at first frame* (It is not important to detect first location of the object. Only tracking the object is the main task.)

-size : 127x127x3 (fixed in training)

• Search image (x)

-It is extracted with center of the tracked image of T-1 frame. Make 255x255 patch with center of that point.

-size : 255x255x3

					Activation size		
	Layer	Support	Chan. map	Stride	for exemplar	for search	chans.
φ					127×127	255×255	$\times 3$
	$\operatorname{conv1}$	11×11	96 imes 3	2	59×59	123×123	$\times 96$
	pool1	3 imes 3		2	29×29	61×61	$\times 96$
	$\operatorname{conv2}$	5 imes 5	256×48	1	25×25	57 imes 57	$\times 256$
	$\operatorname{pool}2$	3 imes 3		2	12×12	28×28	$\times 256$
φ	$\operatorname{conv3}$	3 imes 3	384×256	1	10×10	26×26	$\times 192$
	conv4	3 imes 3	384×192	1	8×8	24×24	$\times 192$
	$\operatorname{conv5}$	3×3	256×192	1	6 imes 6	22×22	$\times 128$

Model Architecture – Get Similarity score & score map

Score map : similarity map, the highest score is the next image to be tracked

- z : Exampler
- x : Search image
- * : Cross-Correlation
- φ : Embeeding (Siamese Net)

b 1: b x indicator function

Logistic loss :
$$\ell(y,v) = \log(1 + \exp(-yv))$$

y :label (-1 or 1) v : similarity

< y = -1 >

< Logistic loss >

Determine $y[u] = \begin{cases} +1 & \text{if } k ||u-c|| \leq R \\ -1 & \text{otherwise} \end{cases}$

k : strides in calculating score mapu : index of center of candidate imagec : center of search imageR : threshold

Model Architecture – Caculating loss

Loss:
$$L(y, v) = \frac{1}{|\mathcal{D}|} \sum_{u \in \mathcal{D}} \ell(y[u], v[u])$$

Learning to : $\arg \min_{\theta} \mathbb{E}_{(z,x,y)} L(y, f(z, x; \theta))$

Experiment

UNIVERSITY

- OPE (One Path Evaluation) : Evaluate one tracker on the entire sequence with initialization from the ground truth position in the first frame
- TRE (Temporal robustness evaluation) : Change the start at different frames of the video and then evaluate
- SRE (Spatial robustness evaluation) : Sample the initial bonding box in the first frame by shifting or scaling the ground truth

What is Biometry?

Thank you!

