Recent Language Models

Sanghyun Seo

Oct 18, 2019

Department of Computer Engineering at Dongguk University

Artificial Intelligence Laboratory

Papers

NPLM (2003)

 Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155.

Word2vec (2013)

 Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

RNNLM (2010)

- Mikolov, Tomáš, et al. "Recurrent neural network based language model." *Eleventh annual conference of the international speech communication association*. 2010.

ELMo (2018)

- Peters, Matthew E., et al. "Deep contextualized word representations." *arXiv* preprint arXiv:1802.05365 (2018).

Transformer (2017)

- Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.

Language Model

- Language model
 - The **language model** is modeling the probability of generating natural language sentences or documents
 - We can use the language model to estimate how natural a sentence or a document is, Also, with the language model, we can generate new sentences or documents
- Probabilistic Language Models
 - Language models assign a probability to each sentence

$$P(W) = P(w_0, w_1, ..., w_n) = \prod_{i=0}^{|W|} P(w_i) = \prod_{i=1}^{|W|+1} P(w_i|w_0, ..., w_{i-1})$$

- Example
 - "this is a language model"

P(this, is, a, language, model)

= P(this)P(is|this) P(a|this,is)P(language|this,is,a) P(model|this,is,a,language)

Language Model

- Probabilistic Language Models
 - Machine translation
 - *P*(this is language model) > *P*(this are language model)
 - Spell correction
 - P(I have a runny nose) > P(I have a runny noise)
 - Speech recognition
 - P(I need a cup of water) > P(I neat a cup of water)
 - Etc...
- Count based word probability
 - $P(model|this, is, a, language) = \frac{count(this is a language model)}{count(this is a language)}$
 - This sentence is likely. However, it is likely to be a low probability depending on the characteristics of the corpus we have
 - If we don't have "this is a language" sentence?
 - → The denominator is 0
 - It is sparsity problem

Language Model

- N-gram language model
 - Unigram, Bigram, Trigram, N-gram
- Bigram example
 - $P(w_i|w_0,...,w_{i-1}) \approx P(w_i|w_{i-1})$
 - Example
 - "this is a language model"

P(this is a language model)

- = P(this)P(is|this) P(is|this,is)(language|this,is,a) P(model|this,is,a,language) $\approx P(this)P(is|this)P(a|is)P(language|is)P(model|language)$
 - Still, It has a sparsity problem

- NPLM(Neural Probabilistic Language Model)
 - $P(w_i|w_0,...,w_{i-1})$ is obtained from neural networks

• Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155.

- NPLM(Neural Probabilistic Language Model)
 - Words are represented with a one-hot vector
 - This = [1, 0, 0, 0, 0 ..., 0], Is = [0, 1, 0, 0, 0 ..., 0], a = [0, 0, 1, 0, 0 ..., 0] Language = [0, 0, 0, 1, 0 ..., 0], Model = [0, 0, 0, 0, 1,..., 0]
 - That's a large vector → limit to 20,000 most frequent words
 - Map each word first into a lower-dimensional real-valued space

- NPLM(Neural Probabilistic Language Model)
 - Add direct connections from embedding layer to output layer
 - Activation functions
 - input→embedding: none
 - embedding→hidden: tanh
 - hidden→output: softmax

- By-product: embedding of word into continuous space
- Similar contexts → similar embedding
- Recall: distributional semantics

- NPLM(Neural Probabilistic Language Model)
 - Word embedding (distributed representation)

- Word embedding model
 - Sparse representation
 - one-hot encoding = [0, 0,...1,..., 0]
 - Distributed representation
 - dense vector = = [0.2, 0.7, ... 1.23, ..., -2.3]
 - One-hot representation → word embedding model → distributed representation(embedding vector)
 - Embedding vector
 - Low dimensional
 - Trainable
 - Float type

- Word2vec
 - 2 basic neural network models:
 - · Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

- Word2vec
 - E.g. "this is a word embedding model"
 - Window size = 2
 - $P(word|a, is, embedding, model; \theta)$

- Word2vec
 - Computation
 - NPLM: (n*m)+(n*m*h)+(h*V)
 - Word2vec: (n*m)+(m*V)
 - Word2vec: (n*m)+(m*log V) with negative sampling

- Similar language model
 - Glove, Fast-text, ...

https://wikidocs.net/22660

- RNNLM: recurrent neural network based language model
 - $P(w_i|w_0,...,w_{i-1})$ is obtained from recurrent neural networks

Figure 1: Simple recurrent neural network.

Mikolov, Tomáš, et al. "Recurrent neural network based language model." Eleventh annual conference of the international speech communication association. 2010.

https://dengliangshi.github.io/2017/01/01/neural-network-language-models.html

- ELMo: Embeddings from Language Models
 - Bidirectional language model
 - Forward pass

$$P(w_0, w_1, \dots, w_n) = \prod_{i=1}^{|W|+1} P(w_i | w_0, \dots, w_{i-1})$$

Backward pass

$$P(w_0, w_1, ..., w_n) = \prod_{i=1}^{|W|+1} P(w_i | w_{i+1}, ..., w_n)$$

• Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

- ELMo: Embeddings from Language Models
 - Bidirectional language model
 - Objective function → negative log likelihood

$$egin{aligned} \mathcal{L} = -\sum_{i=1}^{n} \left(\log p(x_i \mid x_1, \dots, x_{i-1}; \Theta_e, \overset{
ightarrow}{\Theta}_{ ext{LSTM}}, \Theta_s) + \ \log p(x_i \mid x_{i+1}, \dots, x_n; \Theta_e, \overset{
ightarrow}{\Theta}_{ ext{LSTM}}, \Theta_s)
ight) \end{aligned}$$

https://www.topbots.com/generalized-language-models-cove-elmo/

- ELMo: Embeddings from Language Models
 - Bidirectional language model

https://medium.com/@plusepsilon/the-bidirectional-language-model-1f3961d1fb27

- ELMo: Embeddings from Language Models
 - ELMo Representations → dynamic representations
 - Example: "Broadway play produced by him"

$$v_i = f(R_i; \Theta^{ ext{task}}) = \gamma^{ ext{task}} \sum_{\ell=0}^L s_i^{ ext{task}} \mathbf{h}_{i,\ell}$$

https://wikidocs.net/33930

- ELMo: Embeddings from Language Models
 - dynamic representations
 - Disambiguate both the part of the speech and word sense in the source sentence

	Source	Nearest Neighbors	
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer	
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round	
	tacular play on Alusik 's grounder {}	excellent play.	
	Olivia De Havilland signed to do a Broadway	{} they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles	
	play for Garson {}	competently, with nice understatement.	

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

[•] Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

- Seq2Seq (encoder-decoder)
 - Missing long-term memory
 - Vanishing gradients

- https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f
- Cho, Kyunghyun, et al. "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint arXiv:1409.1259 (2014).

Seq2Seq (encoder-decoder) with attention

https://machinelearningmastery.com/how-does-attention-work-in-encoder-decoder-recurrent-neural-networks/

Seq2Seq (encoder-decoder) with attention

 $\underline{https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3}$

Seq2Seq (encoder-decoder) with attention

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s})\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s'})\right)}$$
 [Attention weights] (1)
$$\boldsymbol{c}_{t} = \sum_{s} \alpha_{ts} \bar{\boldsymbol{h}}_{s}$$
 [Context vector] (2)
$$\boldsymbol{a}_{t} = f(\boldsymbol{c}_{t}, \boldsymbol{h}_{t}) = \tanh(\boldsymbol{W}_{\boldsymbol{c}}[\boldsymbol{c}_{t}; \boldsymbol{h}_{t}])$$
 [Attention vector] (3)

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
- https://www.tensorflow.org/tutorials/text/nmt_with_attention

- Transformer
 - Removing RNN
 - How can we obtained attention score? → self attention

24

Transformer

- Encoder
 - Positional embedding
 - Multi-head attention
 - Add & layer normalization
- Decoder
 - Inputs
 - Masked multi-head attention
 - Outputs

Figure 1: The Transformer - model architecture.

• Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

- Transformer
 - Encoder
 - · Positional embedding
 - Actual word representations are <u>byte-pair encodings</u>
 - Also added is a positional encoding so same words <u>at different locations</u>
 <u>have different overall representations</u>

$$\begin{split} PE_{(pos,2i)} &= sin(pos/10000^{2i/d_{\rm model}}) \\ PE_{(pos,2i+1)} &= cos(pos/10000^{2i/d_{\rm model}}) \end{split}$$

Figure 1: The Transformer - model architecture.

http://jalammar.github.io/illustrated-transformer/

- Encoder
 - Multi-head attention
- Self-attention
 - Input: embeddings
 - Weights: Wq, Wk, Wv
 - Queries, keys values

Figure 1: The Transformer - model architecture.

• http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Encoder
 - Multi-head attention
 - Multi-head

Figure 1: The Transformer - model architecture.

^{• &}lt;a href="http://jalammar.github.io/illustrated-transformer/">http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Encoder
 - Multi-head attention

• http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Encoder
 - Add & layer normalization

Figure 1: The Transformer - model architecture.

^{• &}lt;a href="http://jalammar.github.io/illustrated-transformer/">http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Encoder
 - Add & layer normalization

Output Probabilities Linear Forward Multi-Head Attention Forward Add & Norm Multi-Head Multi-Head Attention Attention Positional Encoding Encoding Output Embedding Embedding Inputs Outputs (shifted right)

Figure 1: The Transformer - model architecture.

• http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Decoder
 - Inputs : Key(enc), Value(enc), Word embeddings (dec)

Figure 1: The Transformer - model architecture.

- Transformer
 - Decoder
 - Inputs

http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Encoder
 - Positional embedding
 - Multi-head attention
 - Add & layer normalization
 - Decoder
 - Masked multi-head attention
 - Multi-head attention

Figure 1: The Transformer - model architecture.

[•] http://jalammar.github.io/illustrated-transformer/

- Transformer
 - Decoder
 - Outputs
 - Cross-entropy, KL Divergence

Figure 1: The Transformer - model architecture.

• http://jalammar.github.io/illustrated-transformer/

Experiments

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1		$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot$	$2.3 \cdot 10^{19}$	

- Base model for other language models
 - BERT, GPT ...

[•] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Reference

- Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155.
- Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.
- https://wikidocs.net/22660
- https://dengliangshi.github.io/2017/01/01/neural-network-language-models.html
- Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).
- https://www.topbots.com/generalized-language-models-cove-elmo/
- https://medium.com/@plusepsilon/the-bidirectional-language-model-1f3961d1fb27
- https://wikidocs.net/33930
- https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f
- Cho, Kyunghyun, et al. "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint arXiv:1409.1259 (2014).
- https://machinelearningmastery.com/how-does-attention-work-in-encoder-decoder-recurrent-neural-networks/
- https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
- https://www.tensorflow.org/tutorials/text/nmt_with_attention
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- http://jalammar.github.io/illustrated-transformer/

Q&A Thank you!