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1. Prerequisites
Pre-training Language Model

https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384

https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384


1. Prerequisites
GLUE

• A Multi-Task Benchmark And Analysis Platform For Natural Language 
Understanding

https://gluebenchmark.com/

https://gluebenchmark.com/


1. Prerequisites
GLUE

• A Multi-Task Benchmark And Analysis Platform For Natural Language 
Understanding

https://docs.google.com/spreadsheets/d/1BrOdjJgky7FfeiwC_VDURZuRPUFUAz_jfczPPT35P00/edit#gid=0

https://docs.google.com/spreadsheets/d/1BrOdjJgky7FfeiwC_VDURZuRPUFUAz_jfczPPT35P00/edit#gid=0


1. Prerequisites
MT-DNN (Liu et al., 2019)

• Multi-task Deep Neural Networks for Natural Language Understanding
• It Improves the performance by multi-task learning



1. Prerequisites
Modal-Agnostic Meta-Learning(MAML) (Finn et al., 2017)



2. 
LEOPARD



2. LEOPARD
Learning to gEnerate sOftmax Parameters foR Diverse classification

• Problem Definition
• Fine-tuning on a new task still requires large amount of task-specific labelled data to achieve 

good performance

• Consider this problem of learning to generalize to new tasks with few samples as a meta-
learning problem

𝜏1 𝜏2 𝜏𝑖

𝜏𝑖 ∼ 𝑃 𝑇 ⋯



2. LEOPARD
Learning to gEnerate sOftmax Parameters foR Diverse classification

• Problem Definition
• But, in the NLP field, meta-learning’s application still limited to simulated problems 

or problems with limited diversity across tasks.
• E.g. FewRel(Han et al., 2018), Amazon Review Sentiment Classification(Blitzer et al., 2007),

20 Newsgroups(Lang, 1995)

• LEOPARD enables optimization-based meta-learning across tasks with different number of 
classes. So there is no limitation on the type of task.

𝜏1 𝜏2 𝜏𝑖

𝜏𝑖 ∼ 𝑃 𝛵 ⋯



2. LEOPARD
Model

1. A Shared Neural Input Encoder

2. A Softmax Parameter Generator

3. A MAML-based Adaptation Method



2. LEOPARD
Model

1. A Shared Neural Input Encoder
 BERT-base Model(Devlin et al., 2018)

 Generate feature representations
useful across tasks



2. LEOPARD
Model

2. A Softmax Parameter Generator
• Conditioned on the meta-training 

dataset for an 𝑁-way task,
which generates the softmax
parameters for the task

• MAML can’t deal with a variable 𝑁
(i.e. the number of classes)

• Like Prototypical Networks,
it builds a linear layer to compute
the score for a certain class.
It takes a subset of an 𝑁-way task,
which are belong to a certain class
and outputs the similarity score to
certain class



2. LEOPARD
Model

2. A Softmax Parameter Generator
1. Given the training data 𝐷𝑖

𝑡𝑟 = 𝑥𝑗 , 𝑦𝑗 , for a task 𝑇𝑖 in episode,
the input is partitioned into the 𝑁𝑖 number of classes for the task
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2. LEOPARD
Model

2. A Softmax Parameter Generator
2. Text encoder (𝒇𝜽) encodes the each of the inputs into the representation (𝑋𝑗),

and Parameter generator (𝒈𝝍) obtains a set representation for the class 𝑛 as 𝑤𝑖
𝑛, 𝑏𝑖
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2. LEOPARD
Model

2. A Softmax Parameter Generator
3. The softmax classification weights 𝐖𝑖 ∈ 𝑅𝑖

𝑁𝑖×𝑙 and bias 𝐛𝑖 ∈ 𝑅𝑖
𝑁𝑖 for task 𝑇𝑖 are obtained by

row-wise concatenation of the per-class weight
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2. LEOPARD
Model

2. A Softmax Parameter Generator
4. Given the softmax parameters, the prediction for a new data-point 𝐱∗ is given as:

where ℎ∅ ⋅ is another MLP with parameters ∅ and output dimension 𝑙 , and the softmax is 
over the set of classes 𝑁𝑖 for the task

𝑝 𝑦 x∗ = softmax{𝐖𝒊ℎ∅ 𝑓𝜃 x∗ + 𝐛𝒊}



2. LEOPARD
Model

2. A Softmax Parameter Generator
• None of task-specific parameters are introduced, instead the parameter are used to generate 

a good initial point for softmax parameters across tasks which can be adapted using SGD 

LEOPARD Multi-task BERT



2. LEOPARD
Model

3. A MAML-based Adaptation Method
• Task-specific parameters
• Updated per tasks(inner loop)
• The higher layers of Transformer(𝜃>𝑣)
• MLP_text(Text Encoder) (∅)
• Softmax Parameters (𝐖𝑖 , 𝐛𝑖)

• Task-agnostic parameters
• Updated per episodes(outer loop)
• Shared across tasks
• The lower layers of Transformer(𝜃≤𝑣)
• Parameter Generator(𝜓)

…
…

𝑣

> 𝑣

1



2. LEOPARD
Model



3. 
Experiments



3. Experiments

1. Training Tasks

2. Evaluation and Baselines

3. Results
1. Generalization Beyond Training Tasks
2. Few-Shot Domain Transfer
3. Ablation Study



3. Experiments
Training Tasks

• GLUE Benchmark tasks(Wang et al., 2018)
• MNLI(m/mm), SST-2, QNLI, QQP, MRPC, RTE, SNLI
• WNLI, STS-B datasets are excluded
• WNLI  : it’s training data is small

• STS-B  : it is a regression task
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3. Experiments
Training Tasks

• Data Augmentation
• For tasks with more than 2 labels,

they classify between every pair of labels
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3. Experiments
Evaluation and Baselines

• Training and Evaluation Process

1. The models are trained on
the set of training tasks

The hyper-parameters are tuned
with the set of validation tasks



3. Experiments
Evaluation and Baselines

• Training and Evaluation Process

2. The models are fine-tuned with
𝑘 training examples per label
for a target test task
(𝑘 ∈ {4, 8, 16})

• For the fine-turning step,
tuning the hyper-parameters
for all baselines on a held out validation task

• SciTail, a scientific NLI tasks, and
electronics domain of
Amazon sentiment classification task



3. Experiments
Evaluation and Baselines

• Training and Evaluation Process

2. The models are fine-tuned with
𝑘 training examples per label
for a target test task
(𝑘 ∈ {4, 8, 16})

• For the fine-turning step,
only tuning the number of epochs
for LEOPARD on a held out validation task



3. Experiments
Evaluation and Baselines

• Training and Evaluation Process

3. The fine-tuned models are 
evaluated on the entire test-set
for the task.

𝑡𝑒𝑠𝑡



3. Experiments
Evaluation and Baselines

• Baselines
• Transfer learning baselines
• BERT     
• Multi-task BERT(MT-BERT)
• MT-BERT

• Meta-learning baselines
• Prototypical BERT(Proto-BERT)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑏𝑎𝑠𝑒

BERTbase MT-BERTsoftmaxMT-BERT

Proto-BERT



3. Experiments
Results

• Generalization Beyond Training Tasks
• Performance on new tasks not seen at training time

• Datasets



3. Experiments
Results

• Generalization Beyond Training Tasks
• Robust to varying number of labels

across tasks and
across different text domains

• It adapts quicker to new text domains
than MT-BERT

• Relative gain in accuracy
• 14.45%, 10.75%, 10.9%

𝑘 = 4, 8, 16 respectively



3. Experiments
Results

• Few-Shot Domain Transfer
• Performance on new domains of tasks seen at training time

• Datasets



3. Experiments
Results

• Few-Shot Domain Transfer
• Perform better than the baselines on all domains sentiment classification
• On SciTail, MT-BERT perform better, potentially because training consisted of 

many related NLI datasets



3. Experiments
Results

• Ablation Study
1. Importance of softmax parameters

2. Parameter efficiency

3. Importance of training tasks



3. Experiments
Results

• Ablation Study
• Datasets



3. Experiments
Results

• Ablation Study
1. Importance of softmax parameters
• To study how the softmax generator works,

it is replaced with softmax weight and bias 
with zero initialization for each task
 LEOPARD-ZERO

• It performs worse on new tasks(Entity Typing)



3. Experiments
Results

• Ablation Study
2. Parameter efficiency
• 3 variants of LEOPARD with parameter efficient training
• LEOPARD   : It does not adapt layers 0 to 𝑣 in the inner-loop of meta-training

*NOTE : Even for 𝑣 ≠ 0, the parameters are still optimized in the outer-loop

𝑣



3. Experiments
Results

• Ablation Study
2. Parameter efficiency
• For all tasks (except NLI) adapting all parameter is better
• On SciTail (NLI) adapting fewer parameters is better for small k



3. Experiments
Results

• Ablation Study
3. Importance of training tasks
• How target-task performance of MT-BERT and LEOPARD is dependent on 

tasks used for training
• LEOPARDS’s performance is more consistent



4. 
Conclusions



4. Conclusions

• Learning general linguistic intelligence has been
a long-term goal of NLP

• LEOPARD learns more general purpose parameters that better 
prime the model to solve completely new tasks with few examples

• But performance with few-examples sill lags behind human-level 
performance
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