

# Learning to few-shot learning across the text classification tasks

Daeung Kim 2020.06.12.



#### **1.** Prerequisites

#### **2. LEOPARD**

#### **3. Experiments**

#### **4.** Conclusions

## 1. Prerequisites

## **1.** Prerequisites Pre-training Language Model

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process,

2 - Supervised training on a specific task with a labeled dataset.

Supervised Learning Step



https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384

#### **1. Prerequisites** GLUE

 A Multi-Task Benchmark And Analysis Platform For Natural Language Understanding



| Corpus                      | Train                       | Test                        | Task                                            | Metrics                                              | Domain                                                 |  |  |  |
|-----------------------------|-----------------------------|-----------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--|--|--|
|                             |                             |                             | Single-Se                                       | entence Tasks                                        |                                                        |  |  |  |
| CoLA<br>SST-2               | 8.5k<br>67k                 | <b>1k</b><br>1.8k           | acceptability sentiment                         | Matthews corr.<br>acc.                               | misc.<br>movie reviews                                 |  |  |  |
|                             |                             |                             | Similarity and                                  | l Paraphrase Tasks                                   |                                                        |  |  |  |
| MRPC<br>STS-B<br>QQP        | 3.7k<br>7k<br>364k          | 1.7k<br>1.4k<br><b>391k</b> | paraphrase<br>sentence similarity<br>paraphrase | acc./F1<br>Pearson/Spearman corr.<br>acc./F1         | news<br>misc.<br>social QA questions                   |  |  |  |
|                             |                             |                             | Infere                                          | ence Tasks                                           |                                                        |  |  |  |
| MNLI<br>QNLI<br>RTE<br>WNLI | 393k<br>105k<br>2.5k<br>634 | 20k<br>5.4k<br>3k<br>146    | NLI<br>QA/NLI<br>NLI<br>coreference/NLI         | matched acc./mismatched acc.<br>acc.<br>acc.<br>acc. | misc.<br>Wikipedia<br>news, Wikipedia<br>fiction books |  |  |  |

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test sets shown in bold use labels that have never been made public in any form.

#### **1. Prerequisites** GLUE

 A Multi-Task Benchmark And Analysis Platform For Natural Language Understanding

| Dataset | Description                                                                                                | Data example                                                                                                                                                                                                                                                                                       | Metric             |
|---------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CoLA    | Is the sentence grammatical or<br>ungrammatical?                                                           | "This building is than that one."<br>= <b>Ungrammatical</b>                                                                                                                                                                                                                                        | Matthews           |
| SST-2   | Is the movie review positive, negative,<br>or neutral?                                                     | "The movie is funny , smart , visually inventive , and most of all , alive ."<br>= .93056 (Very Positive)                                                                                                                                                                                          | Accuracy           |
| MRPC    | Is the sentence B a paraphrase of sentence A?                                                              | <ul> <li>A) "Yesterday, Taiwan reported 35 new infections, bringing the total number of cases to 418."</li> <li>B) "The island reported another 35 probable cases yesterday, taking its total to 418."</li> <li>= A Paraphrase</li> </ul>                                                          | Accuracy / F1      |
| STS-B   | How similar are sentences A and B?                                                                         | <ul> <li>A) "Elephants are walking down a trail."</li> <li>B) "A herd of elephants are walking along a trail."</li> <li>= 4.6 (Very Similar)</li> </ul>                                                                                                                                            | Pearson / Spearman |
| QQP     | Are the two questions similar?                                                                             | <ul> <li>A) "How can I increase the speed of my internet connection while using a VPN?"</li> <li>B) "How can Internet speed be increased by hacking through DNS?"</li> <li>= Not Similar</li> </ul>                                                                                                | Accuracy / F1      |
| MNLI-mm | Does sentence A entail or contradict sentence B?                                                           | <ul> <li>A) "Tourist Information offices can be very helpful."</li> <li>B) "Tourist Information offices are never of any help."</li> <li>= Contradiction</li> </ul>                                                                                                                                | Accuracy           |
| QNLI    | Does sentence B contain the answer to the question in sentence A?                                          | <ul> <li>A) "What is essential for the mating of the elements that create radio waves?"</li> <li>B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection to the electromagnetic field."</li> <li>= Answerable</li> </ul>                                | Accuracy           |
| RTE     | Does sentence A entail sentence B?                                                                         | <ul> <li>A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support<br/>more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members."</li> <li>B) "Yunus supported more than 50,000 Struggling Members."</li> <li>Entailed</li> </ul> | Accuracy           |
| WNLI    | Sentence B replaces sentence A's<br>ambiguous pronoun with one of the<br>nouns - is this the correct noun? | <ul> <li>A) "Lily spoke to Donna, breaking her concentration."</li> <li>B) "Lily spoke to Donna, breaking Lily's concentration."</li> <li>= Incorrect Referent</li> </ul>                                                                                                                          | Accuracy           |

## **1. Prerequisites** MT-DNN (Liu et al., 2019)

- Multi-task Deep Neural Networks for Natural Language Understanding
  - It Improves the performance by multi-task learning





## 1. Prerequisites

#### Modal-Agnostic Meta-Learning(MAML) (Finn et al., 2017)



| Algo        | rithm 1 Model-Agnostic Meta-Learning                                                                                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requ        | <b>tire:</b> $p(\mathcal{T})$ : distribution over tasks                                                                                               |
| Requ        | <b>lire:</b> $\alpha$ , $\beta$ : step size hyperparameters                                                                                           |
| 1: r        | and omly initialize $\theta$                                                                                                                          |
| 2: V        | while not done do                                                                                                                                     |
| 3:          | Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$                                                                                             |
| 4:          | for all $\mathcal{T}_i$ do                                                                                                                            |
| 5:          | Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples                                                         |
| 6:          | Compute adapted parameters with gradient de-                                                                                                          |
|             | scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$                                                          |
| 7:          | end for                                                                                                                                               |
| 8:          | Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T} \sim \mathcal{D}(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ |
| 9: <b>e</b> | end while                                                                                                                                             |

## 2. LEOPARD

# 2. LEOPARD

Learning to gEnerate sOftmax Parameters foR Diverse classification

- Problem Definition
  - Fine-tuning on a new task still requires large amount of task-specific labelled data to achieve good performance
  - Consider this problem of learning to generalize to new tasks with few samples as a metalearning problem



# 2. LEOPARD

Learning to gEnerate sOftmax Parameters foR Diverse classification

#### Problem Definition

- But, in the NLP field, meta-learning's application still limited to simulated problems or problems with limited diversity across tasks.
  - E.g. FewRel(Han et al., 2018), Amazon Review Sentiment Classification(Blitzer et al., 2007), 20 Newsgroups(Lang, 1995)
- LEOPARD enables optimization-based meta-learning across tasks with different number of classes. So there is no limitation on the type of task.





- 1. A Shared Neural Input Encoder
  - BERT-base Model(Devlin et al., 2018)
  - Generate feature representations useful across tasks



#### 2. A Softmax Parameter Generator

- Conditioned on the meta-training dataset for an N-way task, which generates the softmax parameters for the task
- MAML can't deal with a variable *N* (*i.e. the number of classes*)
- Like Prototypical Networks, it builds a linear layer to compute the score for a certain class. It takes a subset of an *N*-way task, which are belong to a certain class and outputs the similarity score to certain class



#### 2. A Softmax Parameter Generator

1. Given the training data  $D_i^{tr} = \{(x_j, y_j)\}$ , for a task  $T_i$  in episode, the input is partitioned into the  $N_i$  number of classes for the task



 $N_i = 3$ 

#### 2. A Softmax Parameter Generator

2. Text encoder  $(f_{\theta})$  encodes the each of the inputs into the representation  $(X_j)$ , and Parameter generator  $(g_{\psi})$  obtains a set representation for the class n as  $w_i^n$ ,  $b_i^n$ 



#### 2. A Softmax Parameter Generator

3. The softmax classification weights  $\mathbf{W}_i \in R_i^{N_i \times l}$  and bias  $\mathbf{b}_i \in R_i^{N_i}$  for task  $T_i$  are obtained by row-wise concatenation of the per-class weight



#### 2. A Softmax Parameter Generator

4. Given the softmax parameters, the prediction for a new data-point  $\mathbf{x}^*$  is given as:

$$p(y|\mathbf{x}^*) = \operatorname{softmax}\{\mathbf{W}_{i}h_{\emptyset}(f_{\theta}(\mathbf{x}^*)) + \mathbf{b}_{i}\}$$

where  $h_{\emptyset}(\cdot)$  is another MLP with parameters  $\emptyset$  and output dimension l, and the softmax is over the set of classes  $N_i$  for the task

#### 2. A Softmax Parameter Generator

• None of task-specific parameters are introduced, instead the parameter are used to generate a good initial point for softmax parameters across tasks which can be adapted using SGD



LEOPARD

Multi-task BERT

- 3. A MAML-based Adaptation Method
  - Task-specific parameters
  - Updated per tasks(inner loop)
  - The higher layers of Transformer( $\theta_{>\nu}$ )
  - MLP\_text(Text Encoder) (Ø)
  - Softmax Parameters  $(\mathbf{W}_i, \mathbf{b}_i)$

- Task-agnostic parameters
- Updated per episodes(outer loop)
- Shared across tasks
- The lower layers of Transformer( $\theta_{\leq v}$ )
- Parameter Generator( $\psi$ )



Algorithm 1 LEOPARD **Require:** set of M training tasks and losses  $\{(T_1, L_1), \ldots, (T_M, L_M)\}$ , model parameters  $\Theta =$  $\{\theta, \psi, \alpha\}$ , hyper-parameters  $\nu, G, \beta$ Initialize  $\theta$  with pre-trained BERT-base; 1: while not converged do # sample batch of tasks 2: for all  $T_i \in T$  do 3:  $\mathcal{D}_i^{tr} \sim T_i$  # sample a batch of train data 4: 5:  $C_i^n \leftarrow \{x_j | y_j = n\}$  # partition data according to class labels  $w_i^n, b_i^n \leftarrow \frac{1}{|C_i^n|} \sum_{x_i \in C_i^n} g_{\psi}(f_{\theta}(\mathcal{D}_i^{tr}))$  # generate softmax parameters 6: 7:  $\mathbf{W}_i \leftarrow [w_i^1; \ldots; w_i^{N_i}]; \quad \mathbf{b}_i \leftarrow [b_i^1; \ldots; b_i^{N_i}]$ 8:  $\Phi_i^{(0)} \leftarrow \theta_{>\nu} \cup \{\phi, \mathbf{W}_i, \mathbf{b}_i\}$  # task-specific parameters 9: **for**  $s := 0 \dots G - 1$  **do**  $\mathcal{D}_i^{tr} \sim T_i$  # sample a batch of train data 10:  $\Phi_i^{(s+1)} \leftarrow \Phi_i^{(s)} - \alpha_s \nabla_{\Phi} \mathcal{L}_i(\{\Theta, \Phi_i\}, \mathcal{D}_i^{tr})$  # adapt task-specific parameters 11: end for 12: 13:  $\mathcal{D}_i^{val} \sim T_i$  # sample a batch of validation data  $g_i \leftarrow \nabla_{\Theta} \mathcal{L}_i(\{\Theta, \Phi_i^{(G)}\}, \mathcal{D}_i^{val})$  # gradient of task-agnostic parameters on validation 14: end for 15:  $\Theta \leftarrow \Theta - \beta \cdot \sum_{i} g_{i}$  # optimize task-agnostic parameters 16: 17: end while

#### 1. Training Tasks

2. Evaluation and Baselines

#### 3. Results

- 1. Generalization Beyond Training Tasks
- 2. Few-Shot Domain Transfer
- 3. Ablation Study

### **3. Experiments** Training Tasks

- GLUE Benchmark tasks(Wang et al., 2018)
  - MNLI(m/mm), SST-2, QNLI, QQP, MRPC, RTE, SNLI
  - WNLI, STS-B datasets are excluded
    - WNLI : it's training data is small
    - STS-B : it is a regression task







## **3. Experiments** Training Tasks

- Data Augmentation
  - For tasks with more than 2 labels, they classify between every pair of labels



#### **Evaluation and Baselines**

- Training and Evaluation Process
  - The models are trained on the set of training tasks

The hyper-parameters are tuned with the set of validation tasks



#### **Evaluation and Baselines**

- Training and Evaluation Process
  - 2. The models are fine-tuned with k training examples per label for a target test task  $(k \in \{4, 8, 16\})$ 
    - For the fine-turning step, tuning the hyper-parameters for all baselines on a held out validation task
    - SciTail, a scientific NLI tasks, and electronics domain of Amazon sentiment classification task



#### **Evaluation and Baselines**

- Training and Evaluation Process
  - 2. The models are fine-tuned with *k* training examples per label for a target test task  $(k \in \{4, 8, 16\})$ 
    - For the fine-turning step, only tuning the number of epochs for LEOPARD on a held out validation task



#### **Evaluation and Baselines**

- Training and Evaluation Process
  - 3. The fine-tuned models are evaluated on the *entire test-set* for the task.



#### **Evaluation and Baselines**

- Baselines
  - Transfer learning baselines
    - BERT<sub>base</sub>
    - Multi-task BERT(MT-BERT)
    - MT-BERT<sub>softmax</sub>



BERT<sub>base</sub>



MT-BERT



MT-BERT<sub>softmax</sub>

- Meta-learning baselines
  - Prototypical BERT(Proto-BERT)



- Generalization Beyond Training Tasks
  - Performance on **new tasks** not seen at training time
  - Datasets



- Generalization Beyond Training Tasks
  - Robust to varying number of labels across tasks and across different text domains
  - It adapts quicker to new text domains than MT-BERT
    - Relative gain in accuracy
      - 14.45%, 10.75%, 10.9%
         k = 4, 8, 16 respectively

|                    |    |    |                            | Entity Typing              |                                    |                  |                                    |
|--------------------|----|----|----------------------------|----------------------------|------------------------------------|------------------|------------------------------------|
|                    | N  | k  | BERTbase                   | MT-BERT <sub>softmax</sub> | MT-BERT                            | Proto-BERT       | LEOPARD                            |
|                    |    | 4  | $50.44 \pm 08.57$          | $52.28 \pm 4.06$           | $55.63 \pm 4.99$                   | $32.23 \pm 5.10$ | $54.16 \pm 6.32$                   |
| CoNLL              | 4  | 8  | $50.06 \pm 11.30$          | $65.34 \pm 7.12$           | $58.32 \pm 3.77$                   | $34.49 \pm 5.15$ | 67.38 ± 4.33                       |
|                    |    | 16 | $74.47 \pm 03.10$          | $71.67 \pm 3.03$           | $71.29 \pm 3.30$                   | 33.75 ± 6.05     | 76.37 ± 3.08                       |
|                    |    | 4  | $49.37 \pm 4.28$           | $45.52 \pm 5.90$           | $\textbf{50.49} \pm \textbf{4.40}$ | $17.36 \pm 2.75$ | 49.84 ± 3.31                       |
| MITR               | 8  | 8  | $49.38 \pm 7.76$           | $58.19 \pm 2.65$           | $58.01 \pm 3.54$                   | $18.70 \pm 2.38$ | 62.99 ± 3.28                       |
|                    |    | 16 | $69.24 \pm 3.68$           | $66.09 \pm 2.24$           | 66.16 ± 3.46                       | $16.41 \pm 1.87$ | $70.44 \pm 2.89$                   |
|                    |    |    |                            | Text Classification        |                                    |                  |                                    |
|                    |    | 4  | $42.76 \pm 13.50$          | $43.73 \pm 7.86$           | $46.29 \pm 12.26$                  | $40.27 \pm 8.19$ | 54.95 ± 11.81                      |
| Airline            | 3  | 8  | $38.00 \pm 17.06$          | $52.39 \pm 3.97$           | $49.81 \pm 10.86$                  | $51.16 \pm 7.60$ | $61.44 \pm 03.90$                  |
|                    |    | 16 | $58.01 \pm 08.23$          | 58.79 ± 2.97               | 57.25 ± 09.90                      | 48.73 ± 6.79     | 62.15 ± 05.56                      |
|                    |    | 4  | 55.73 ± 10.29              | $52.87 \pm 6.16$           | 50.61 ± 8.33                       | $50.87 \pm 1.12$ | 51.45 ± 4.25                       |
| Disaster           | 2  | 8  | $56.31 \pm 09.57$          | $56.08 \pm 7.48$           | $54.93 \pm 7.88$                   | $51.30 \pm 2.30$ | $55.96 \pm 3.58$                   |
|                    |    | 16 | $64.52 \pm 08.93$          | $65.83 \pm 4.19$           | $60.70 \pm 6.05$                   | $52.76 \pm 2.92$ | $61.32 \pm 2.83$                   |
|                    |    | 4  | $09.20 \pm 3.22$           | $09.41 \pm 2.10$           | $09.84 \pm 2.14$                   | $09.18 \pm 3.14$ | 11.71 ± 2.16                       |
| Emotion            | 13 | 8  | $08.21 \pm 2.12$           | $11.61 \pm 2.34$           | $11.21 \pm 2.11$                   | $11.18 \pm 2.95$ | $12.90 \pm 1.63$                   |
|                    |    | 16 | $13.43 \pm 2.51$           | $13.82 \pm 2.02$           | $12.75 \pm 2.04$                   | $12.32\pm3.73$   | $13.38 \pm 2.20$                   |
|                    |    | 4  | $54.57 \pm 5.02$           | $54.32 \pm 3.90$           | 54.66 ± 3.74                       | 56.33 ± 4.37     | 60.49 ± 6.66                       |
| Political Bias     | 2  | 8  | 56.15 ± 3.75               | $57.36 \pm 4.32$           | 54.79 ± 4.19                       | 58.87 ± 3.79     | 61.74 ± 6.73                       |
|                    |    | 16 | $60.96 \pm 4.25$           | $59.24 \pm 4.25$           | $60.30 \pm 3.26$                   | $57.01 \pm 4.44$ | $\textbf{65.08} \pm 2.14$          |
|                    |    | 4  | 51.02 ± 1.23               | $50.45 \pm 1.01$           | 50.96 ± 1.72                       | 49.55 ± 1.98     | 50.84 ± 1.33                       |
| Political Audience | 2  | 8  | $50.87 \pm 1.88$           | $51.63 \pm 1.81$           | $50.36 \pm 1.53$                   | $50.62 \pm 1.35$ | 51.74 ± 1.37                       |
|                    |    | 16 | $\textbf{53.09} \pm 1.93$  | $52.41 \pm 1.25$           | $51.24 \pm 2.18$                   | $50.92 \pm 1.56$ | $51.90 \pm 1.43$                   |
|                    |    | 4  | $15.64 \pm 2.73$           | 13.71 ± 1.10               | 14.49 ± 1.75                       | $14.22 \pm 1.25$ | 15.69 ± 1.57                       |
| Political Message  | 9  | 8  | $13.38 \pm 1.74$           | $14.33 \pm 1.32$           | $15.24 \pm 2.81$                   | $15.67 \pm 1.96$ | $18.02 \pm 2.32$                   |
|                    |    | 16 | <b>20.67</b> ± 3.89        | $18.11 \pm 1.48$           | $19.20 \pm 2.20$                   | $16.49 \pm 1.96$ | $18.07 \pm 2.41$                   |
|                    |    | 4  | 39.42 ± 07.22              | $44.82 \pm 9.00$           | 38.97 ± 13.27                      | 48.44 ± 7.43     | <b>54.92</b> ± 6.18                |
| Rating Books       | 3  | 8  | $39.55 \pm 10.01$          | $51.14 \pm 6.78$           | $46.77 \pm 14.12$                  | $52.13 \pm 4.79$ | 59.16 ± 4.13                       |
|                    |    | 16 | $43.08 \pm 11.78$          | $54.61 \pm 6.79$           | $51.68 \pm 11.27$                  | $57.28 \pm 4.57$ | 61.02 ± 4.19                       |
|                    |    | 4  | 32.22 ± 08.72              | $45.94 \pm 7.48$           | 41.23 ± 10.98                      | 47.73 ± 6.20     | 49.76 ± 9.80                       |
| Rating DVD         | 3  | 8  | $36.35 \pm 12.50$          | $46.23 \pm 6.03$           | $45.24 \pm 9.76$                   | $47.11 \pm 4.00$ | $\textbf{53.28} \pm 4.66$          |
| -                  |    | 16 | $42.79 \pm 10.18$          | $49.23 \pm 6.68$           | $45.19 \pm 11.56$                  | $48.39 \pm 3.74$ | $53.52 \pm 4.77$                   |
|                    |    | 4  | 39.27 ± 10.15              | 39.89 ± 5.83               | $41.20 \pm 10.69$                  | $37.40 \pm 3.72$ | 51.71 ± 7.20                       |
| Rating Electronics | 3  | 8  | $28.74 \pm 08.22$          | $46.53 \pm 5.44$           | $45.41 \pm 09.49$                  | $43.64 \pm 7.31$ | $\textbf{54.78} \pm \textbf{6.48}$ |
| -                  |    | 16 | $45.48 \pm \textbf{06.13}$ | $48.71 \pm 6.16$           | $47.29 \pm 10.55$                  | $44.83 \pm 5.96$ | $\textbf{58.69} \pm 2.41$          |
|                    |    | 4  | 34.76 ± 11.20              | $40.41 \pm 5.33$           | 36.77 ± 10.62                      | 44.72 ± 9.13     | 50.21 ± 09.63                      |
| Rating Kitchen     | 3  | 8  | $34.49 \pm 08.72$          | 48.35 ± 7.87               | $47.98 \pm 09.73$                  | $46.03 \pm 8.57$ | $\textbf{53.72} \pm 10.31$         |
|                    |    | 16 | $47.94 \pm 08.28$          | $52.94 \pm 7.14$           | $53.79 \pm 09.47$                  | $49.85 \pm 9.31$ | $\textbf{57.00} \pm 08.69$         |
|                    |    | 4  | 38.06                      | 40.04                      | 40.05                              | 36.13            | 45.84                              |
| Overall Average    |    | 8  | 36.83                      | 45.73                      | 43.92                              | 39.05            | 50.65                              |
|                    |    | 16 | 48.10                      | 49.60                      | 48.74                              | 39.63            | 55.02                              |

- Few-Shot Domain Transfer
  - Performance on **new domains** of tasks seen at training time
  - Datasets



- Few-Shot Domain Transfer
  - Perform better than the baselines on all domains sentiment classification
  - On SciTail, MT-BERT perform better, potentially because training consisted of many related NLI datasets

|         | Natural Language InferencekBERT<br>baseMT-BERT<br>softmaxMT-BERT<br>MT-BERTMT-BERT<br>reuseProto-BERTLEOPARD4 $58.53 \pm 09.74$ $74.35 \pm 5.86$ $63.97 \pm 14.36$ $76.65 \pm 2.45$ $76.27 \pm 4.26$ $69.50 \pm 9.56$ 18 $57.93 \pm 10.70$ $79.11 \pm 3.11$ $68.24 \pm 10.33$ $76.86 \pm 2.09$ $78.27 \pm 0.98$ $75.00 \pm 2.42$ 16 $65.66 \pm 06.82$ $79.60 \pm 2.31$ $75.35 \pm 04.80$ $79.53 \pm 2.17$ $78.59 \pm 0.48$ $77.03 \pm 1.82$ Amazon Review Sentiment Classification4 $54.81 \pm 3.75$ $68.69 \pm 5.21$ $64.93 \pm 8.65$ $74.79 \pm 6.91$ $73.15 \pm 5.85$ $82.54 \pm 1.33$ 8 $53.54 \pm 5.17$ $74.86 \pm 2.17$ $67.38 \pm 9.78$ $78.21 \pm 3.49$ $75.46 \pm 6.87$ $83.03 \pm 1.28$ 16 $65.56 \pm 4.12$ $74.88 \pm 4.34$ $69.65 \pm 8.94$ $78.87 \pm 3.32$ $77.26 \pm 3.27$ $83.33 \pm 0.79$ |                            |                            |                   |                          |                  |                                     |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------|--------------------------|------------------|-------------------------------------|--|--|--|
|         | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BERTbase                   | MT-BERT <sub>softmax</sub> | MT-BERT           | MT-BERT <sub>reuse</sub> | Proto-BERT       | LEOPARD                             |  |  |  |
|         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $58.53 \pm 09.74$          | $74.35 \pm 5.86$           | $63.97 \pm 14.36$ | $76.65 \pm 2.45$         | $76.27 \pm 4.26$ | $69.50 \pm 9.56$                    |  |  |  |
| Scitail | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $57.93 \pm 10.70$          | 79.11 ± 3.11               | $68.24 \pm 10.33$ | $76.86 \pm 2.09$         | $78.27 \pm 0.98$ | $75.00 \pm 2.42$                    |  |  |  |
|         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $65.66 \pm \textbf{06.82}$ | $79.60 \pm 2.31$           | $75.35 \pm 04.80$ | $79.53 \pm 2.17$         | $78.59 \pm 0.48$ | $77.03 \pm 1.82$                    |  |  |  |
|         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                            |                   |                          |                  |                                     |  |  |  |
|         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $54.81 \pm 3.75$           | $68.69 \pm 5.21$           | $64.93 \pm 8.65$  | $74.79 \pm 6.91$         | $73.15 \pm 5.85$ | $82.54 \pm 1.33$                    |  |  |  |
| Books   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $53.54 \pm 5.17$           | $74.86 \pm 2.17$           | $67.38 \pm 9.78$  | $78.21 \pm 3.49$         | $75.46 \pm 6.87$ | $\textbf{83.03} \pm \textbf{1.28}$  |  |  |  |
|         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $65.56 \pm 4.12$           | $74.88 \pm 4.34$           | $69.65 \pm 8.94$  | $78.87 \pm 3.32$         | $77.26 \pm 3.27$ | $\textbf{83.33} \pm \textbf{0.79}$  |  |  |  |
|         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $56.93 \pm 7.10$           | $63.07 \pm 7.80$           | $60.53 \pm 9.25$  | $75.40 \pm 6.27$         | 62.71 ± 9.53     | $\textbf{78.35} \pm \textbf{18.36}$ |  |  |  |
| Kitchen | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $57.13 \pm 6.60$           | $68.38 \pm 4.47$           | $69.66 \pm 8.05$  | $75.13 \pm 7.22$         | $70.19 \pm 6.42$ | $\textbf{84.88} \pm \textbf{01.12}$ |  |  |  |
|         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $68.88 \pm 3.39$           | $75.17 \pm 4.57$           | $77.37 \pm 6.74$  | $80.88 \pm 1.60$         | $71.83 \pm 5.94$ | $\textbf{85.27} \pm \textbf{01.31}$ |  |  |  |

Table 2: Domain transfer evaluation (accuracy) on NLI and Sentiment classification datasets.

- Ablation Study
  - 1. Importance of softmax parameters
  - 2. Parameter efficiency
  - 3. Importance of training tasks

- Ablation Study
  - Datasets



- Ablation Study
  - Importance of softmax parameters
  - To study how the softmax generator works, it is replaced with softmax weight and bias with zero initialization for each task
     → LEOPARD-ZERO
  - It performs worse on new tasks(Entity Typing)



| k  | Model        | Entity Typing    | Sentiment Classification | NLI              |
|----|--------------|------------------|--------------------------|------------------|
|    | LEOPARD 10   | $37.62 \pm 7.37$ | $58.10 \pm 5.40$         | $78.53 \pm 1.55$ |
| 16 | LEOPARD 5    | $62.49 \pm 4.23$ | $71.50 \pm 5.93$         | $73.27 \pm 2.63$ |
|    | LEOPARD      | $69.00 \pm 4.76$ | $76.65 \pm 2.47$         | $76.10 \pm 2.21$ |
|    | LEOPARD-ZERO | $44.79 \pm 9.34$ | $74.45 \pm 3.34$         | $74.36 \pm 6.67$ |

- Ablation Study
  - 2. Parameter efficiency
    - 3 variants of LEOPARD with parameter efficient training
    - LEOPARD  $_{v}$ : It does not adapt layers 0 to v in the inner-loop of meta-training

\*NOTE : Even for  $v \neq 0$ , the parameters are still optimized in the outer-loop

| k  | Model        | Entity Typing    | Sentiment Classification | NLI                       |
|----|--------------|------------------|--------------------------|---------------------------|
|    | LEOPARD 10   | $37.62 \pm 7.37$ | $58.10 \pm 5.40$         | $78.53 \pm 1.55$          |
| 16 | LEOPARD 5    | $62.49 \pm 4.23$ | $71.50 \pm 5.93$         | $73.27 \pm 2.63$          |
|    | LEOPARD      | $69.00 \pm 4.76$ | $76.65 \pm 2.47$         | $76.10 \pm 2.21$          |
|    | LEOPARD-ZERO | $44.79 \pm 9.34$ | $74.45 \pm 3.34$         | $74.36 \pm \textbf{6.67}$ |

- Ablation Study
  - 2. Parameter efficiency
    - For all tasks (except NLI) adapting all parameter is better
    - On SciTail (NLI) adapting fewer parameters is better for small k

| k  | Model        | Entity Typing    | Sentiment Classification | NLI                       |
|----|--------------|------------------|--------------------------|---------------------------|
|    | LEOPARD 10   | $37.62 \pm 7.37$ | $58.10 \pm 5.40$         | 78.53 ± 1.55              |
| 16 | LEOPARD 5    | $62.49 \pm 4.23$ | $71.50 \pm 5.93$         | $73.27 \pm 2.63$          |
|    | LEOPARD      | $69.00 \pm 4.76$ | $76.65 \pm 2.47$         | $76.10 \pm 2.21$          |
|    | LEOPARD-ZERO | $44.79 \pm 9.34$ | $74.45 \pm 3.34$         | $74.36 \pm \textbf{6.67}$ |

- Ablation Study
  - 3. Importance of training tasks
    - How target-task performance of MT-BERT and LEOPARD is dependent on tasks used for training
    - LEOPARDS's performance is more consistent

|        | LEOPARD   |       |       |       |       |       |       |       |  | MT-BERT |       |       |       |       |       |       |
|--------|-----------|-------|-------|-------|-------|-------|-------|-------|--|---------|-------|-------|-------|-------|-------|-------|
|        | Typing    | -0.08 | -0.10 | -0.08 | -0.10 | -0.08 | -0.13 | -0.08 |  | -0.19   | -0.26 | -0.10 | -0.22 | -0.11 | 0.08  | -0.13 |
| s-shot | Sentiment | -0.03 | -0.09 | -0.04 | 0.00  | -0.02 | -0.00 | -0.07 |  | 0.05    | 0.04  | 0.14  | 0.21  | 0.11  | 0.16  | 0.00  |
| ω      | NLI       | -0.00 | -0.07 | -0.06 | -0.04 | -0.05 | -0.01 | -0.01 |  | 0.07    | 0.14  | 0.10  | 0.03  | -0.00 | 0.03  | 0.05  |
| Ļ      | Typing    | -0.01 | -0.04 | -0.01 | -0.05 | -0.03 | -0.06 | -0.04 |  | -0.13   | -0.17 | -0.02 | -0.14 | -0.10 | -0.05 | -0.10 |
| 3-shot | Sentiment | -0.01 | -0.02 | -0.04 | -0.00 | -0.02 | -0.00 | -0.03 |  | 0.09    | 0.03  | 0.10  | 0.08  | 0.03  | 0.12  | -0.02 |
| F      | NLI       | -0.00 | -0.07 | -0.04 | -0.03 | -0.02 | -0.02 | -0.01 |  | -0.09   | -0.05 | -0.01 | -0.04 | -0.06 | -0.05 | -0.06 |
|        |           | MALL  | SHI   | RIE   | ONIL  | oos   | MRPC  | 551   |  | MALL    | SHI   | R.W.  | ONIL  | oop   | MRPC  | 551   |

## 4. Conclusions

## 4. Conclusions

- Learning general linguistic intelligence has been a long-term goal of NLP
- LEOPARD learns more general purpose parameters that better prime the model to solve completely new tasks with few examples
- But performance with few-examples sill lags behind human-level performance



# Q & A