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Drug design

» Drug design

e Inventive process of finding new medications based on the knowledge of a
biological target.
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Drug design

» Computer-aided drug design

Ligand-Based Drug Design Structure-Based Drug Design
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Molecular graphs

o SMILES (Simplified molecular-input line-entry system)
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e Representation of molecules — i °
e initiated by David Weininger at the USEPA Mid- ; <3
Continent Ecology Division Laboratory in Duluth in N\ P
the 1980s = H

e A string-based representation derived from
molecular graphs

e Recurrent neural networks (RNNs) are ideal :

candidates for these representations
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MoIGAN: An implicit generative model for small molecular graphs

» MolGAN

e An implicit, likelihood-free
generative model for small
molecular graphs

e Circumvents the need for
expensive graph matching
procedures or node ordering
heuristics of previous likelihood-
based methods

arXiv:1805.11973v1 [stat ML] 30 May 2018

MOolGAN: An implicit generative model for small molecular graphs

Nicola De Cao! Thomas Kipf !

Abstract

Deep generative models for graph-structured data
offer a new angle on the problem of chemical
synthesis: by optimizing differentiable models
that dircctly gencrate molecular graphs, it is pos-
sible to side-step expensive scarch procedures in
the discrete and vast space of chemical structures.
We introduce MolGAN, an implicit, likelihood -
free gencrative model for small molecular graphs
that circumvents the need for expensive graph
matching procedures or node ordering heuris-
tics of previous likelihood-based methods. Our
method adapts generative adversarial networks
(GANS) to operate directly on graph-structurcd
data. We combinc our approach with a reinforce-
ment learning objective to encourage the genera-
tion of molecules with specific desired chemical
propertics. In experiments on the QM9 chemi-
cal database, we demonstrate that our model is
capable of gencrating close to 100% valid com-
pounds. MoIGAN comparcs favorably both to
recent proposals that use string-based (SMILES)

7 i f molecules and to a likelihood-
based method that dircctly generates graphs, al-
beit being susceptible to mode collapsc.

1. Introduction

Finding new chemical compounds with desired propertics
is a challenging task with important applications such as
de novo drug design (Schacider & Fechner, 2005). The
space of synthesizable molecules is vast and scarch in this
space proves to be very difficult, mostly owing to its discrete
nature.

Recent progress in the development of deep gencrative mod-
cls has spawned a range of promising proposals to address
this issuc. Most works in this arca (Gomez-Bombarelli
ct al., 2016; Kusner ct al., 2017, Guimaracs et al., 2017;
Dai ct al., 2018) make usc of a socalled SMILES repre-
sentation (Weininger, 1988) of molecules: a string-based

"Informatics Institute. University of Amsterdam. Amster-

dam, The Netherlands. Correspondence to: Nicola De Cao
<nicola decao@gmail com>

MokecuBr grapn
Generator Discrmpator

I 9 ~
N) H (011
2 -plz) g .

Rmmw‘
network D
X = Pu(x)

(or1)

Figure 1. Schema of MolGAN. A vector z is sampled from a prior
and passed to the generator the graph

of a malecule. The discriminator classifies whether the molecular
graph comes from the generator or the dataset. The reward net-
work tries to estimate the reward for the chemical properties of a
panticular molecule provided by an external software.

representation derived from molecular graphs. Recurrent
ncural networks (RNNs) arc ideal candidates for these rep-
resentations and consequently, most recent works follow the
recipe of applying RNN-based generative models on this
type of encoding. String-bascd representations of molecules,
however, have certain disadvantages: RNNs have to spend
capacity on learning both the syntactic rules and the order
ambiguity of the representation. Besides, this is approach
not applicable to generic (non-molccular) graphs.

SMILES strings arc gencrated from a graph-based represen-
tation of molecules, thereby working in the original graph
space has the benefit of removing additional overhead. With
recent progress in the arca of decp learning on graphs (Bron-
stein et al., 2017; Hamilton ct al., 2017), training decp gen-
crative models dircetly on graph represcatations becomes a
feasible alternative that has been explored in a range of re-
cent works (Kipf & Welling, 2016b; Johnson, 2017; Grover
ct al,, 2017; Li et al., 2018b; Simonovsky & Komodakis,
2018; You ct al., 2018).

Likelihood-bascd methods for molccular graph gencration
(Li et al., 2018b; Simonovsky & Komodakis, 2018) how-
ever, cither require providing a fixed (or randomly choscn)
ordered representation of the graph or an expensive graph
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» Schema of MolGAN

GAN + Reinforcement learning

Generator

Molecular graph
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Generative Adversarial Nets

» Generative Adversarial Nets

P  sample
Random
Noise z — G sample

fake/real
> probability

D(G(z)) =D(X) = 1

2
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Generative Adversarial Nets

» Generative Adversarial Nets
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Black dotted line : Probability distribution of raw data
Green dotted line : Probability distributions of generator
Blue dotted line : Probability distribution of discriminator
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Generative Adversarial Nets

» Generative Adversarial Nets

min max V (D, G)
G D

= B (o l0g D()] + Eary ) log(1 — D(G(2))
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Generative Adversarial Nets

» Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1. the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do
e Sample minibatch of 7 noise samples {z(Y). ... 2™} from noise prior p,(z).
e Sample minibatch of m examples {xM, ... x(™} from data generating distribution

Pdata (ZB ) .
e Update the discriminator by ascending its stochastic gradient:

Voo 32 on (=) s (10 (6 (=)

end for
e Sample minibatch of m noise samples {z(Y), ... (™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3o (1-0(6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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» Background - WGAN

o Wasserstein distance (Earth move distance)

M/p(Prr PG)
_ inf
= yerEeey~yay (1x = yIP)

W(P,,Pg) = || JCSIFPQ]EWPT [f(2)] — Egnp, [f(7)]

|f(z1) = fz2)| < |21 — 2.

Fig.1: Probability distribution F, and Py, each with ten states
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o WGAN

GAN

WGAN

» Background - WGAN

Discriminator/Critic

T, 3 0 () s (10 (0 ()]

Vo X [70) - f(e (:9)

w + clip(w, —¢, c)

Generator
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» Background - WGAN

e Improved WGAN

w + clip(w, —¢, ¢)

Ve #i[ (2@) - f(6 ()]

=1

\

) 2
LWOAN-GP _ [wGaN |, (||V§3(£)D¢(:i“:(t))|| _ 1)

gradient penalty
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» Background — Deep deterministic policy gradients

Generator

z ~p(z)

state

Molecular graph

Reward network
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» Model
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» Model - Generator

Generator
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» Model - Discriminator and reward network

Sampled A Graph
O Discriminator
N} Op“@) GCN %
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» Model - Discriminator and reward network

e Graph convolution

16+1)  p# (£) g Ziw Y, (£)
h' = O (h; ,wi>+ZZ f“h ;)

R = tanh(hl-(eJrl)) :

(3 1

hl@ = signal of the node i at layer |
fs(l) = linear transformation function that acts as a self — connection between layers

fy(l) = edge type — specific af fine function for each layer

N; = set of neighbors for node i
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» Model - Discriminator and reward network

e Node embedding

hg = o(i(hl",z,)) ® tanh(j(h{"), z,)) ,
veEV

hg = tanh h; |
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Molecular graphs

» Experiments

e Studying the effect of the A parameter to find the best trade-off between the
GAN and RL objective

L(Q) =\ LWGAN -+ (]. — A)

e Compare MolGAN with ORGAN
- druglikeness, solubility, synthetizability

e Compare MolGAN against variational autoencoding methods
« CharacterVAE, GrammarVAE, GraphVAE
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Molecular graphs

» Experiments - dataset

e GDB-17 Dataset

- dataset composed of 166.4 billion molecules of up to 17 atoms of C, N, O, S, and
halogens

- contains millions of isomers of known drugs

e QM9 Dataset

+ Subset of GDB-13
« contains 133,885 organic compounds up to 9 heavy atoms
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Molecular graphs

» Experiments — model

Adjacency tensor A Sampled A Graph
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Molecular graphs

» Experiments — evaluation measures

o Validity

< number of valid molecules / number of all generated molecules
e Novelty

- set of valid samples that are not in the dataset / total number of valid samples
e Uniqueness

- number of unique samples and valid samples and it measures the degree of variety during
sampling.
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Molecular graphs

» Experiments - results

o Effect of 1

Algorithm Valid Unique Novel Solubility
A=0(fullRL) 99.8 2.3 97.9 0.86
A=0.01 08.2 2.2 98.1 0.74
A =0.05 922 2.7 95.0 0.67
A=0.1 87.3 3.2 8§7.2 0.56
A=0.25 88.2 2.1 88.2 0.65
A=10.5 86.6 2.1 87.5 0.48
A=0.75 89.6 2.8 89.6 0.57

A=1(moRL) 877 2.9 97.7 0.54

Table 1. Comparison of different combinations of RL and GAN
objectives on the small Sk dataset after GAN-based pretraining for
150 epochs. All values are reported in percentages except for the
solubility score.
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Molecular graphs

» Experiments - results

o Objectives optimization

Objective Algorithm Valid (%) Unique (%) Time (h) Diversity Druglikeliness Synthesizability —Solubility
Druglikeliness ORGAN 88.2 69.4% 9.63* 0.55 0.52 0.32 0.35
OR(W)GAN 85.0 8.2% 10.06%* 0.95 0.60 0.54 0.47
Naive RL 97.1 54.0% 9.39% 0.80 0.57 0.53 0.50
MolGAN 99.9 2.0 1.66 0.95 0.61 0.68 0.52
MOolGAN (QM9) 100.0 22 4.12 0.97 0.62 0.59 0.53
Synthesizability ORGAN 96.5 45.9% 8.66% 0.92 0.51 0.83 0.45
OR(W)GAN 97.6 30.7* 9.60* 1.00 0.20 0.75 0.84
Naive RL 97.7 13.6% 10.60%* 0.96 0.52 0.83 0.46
MolGAN 99.4 2.1 1.04 0.75 0.52 0.90 0.67
MOolGAN (OM9) 100.0 2.1 2.49 0.95 0.53 0.95 0.68
Solubility ORGAN 94.7 54.3% 8.65% 0.76 0.50 0.63 0.55
OR(W)GAN 94.1 20.8% 9.21% 0.90 0.42 0.66 0.54
Naive RL 92.7 100.0* 10.51% 0.75 0.49 0.70 0.78
MolGAN 99.8 23 0.58 0.97 0.45 0.42 0.86
MOolGAN (QM?9) 99.8 2.0 1.62 0.99 0.44 0.22 0.89
All/Alternated ORGAN 96.1 97.2% 10.2% 0.92 0.52 0.71 0.53
All/Simultaneously  MolGAN 97.4 24 212 0.91 0.47 0.84 0.65
All/Simultaneously  MolGAN (OM9) 98.0 23 5.83 0.93 0.51 0.82 0.69

Table 2. Gray cells indicate directly optimized objectives. Baseline results are taken from Guimaraes et al. (2017) (Table 1) and * indicates
results reproduced by us using the code provided by the authors.
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Molecular graphs

o VAE Baselines

» Experiments - results

Algorithm Valid Unique Novel
CharacterVAE 10.3 67.5 90.0
GrammarVAE 60.2 9.3 30.9
GraphVAE 55.7 76.0 61.6
GraphVAE/imp 56.2 42.0 75.8
GraphVAE NoGM  81.0 241 61.0
MolGAN 98.1 10.4 94.2

Table 3. Comparison with different algorithms on QM9. Values
are reported in percentages. Baseline results are taken from Si-

monovsky & Komodakis (2018).
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Molecular graphs

o Conclusion

e Model is capable of generating molecular graphs with both higher validity and novelty
than previous comparable VAE-based generative models

o Compared to a recent SMILES-based sequential GAN model for molecular generation,

MolGAN can achieve higher chemical property while allowing for at least 5times faster
training time

e Limitation of our current formulation is their susceptibility to mode collapse
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