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= Last Seminar : Deep Reinforcement Learning
1. Introduction to Deep Reinforcement Learning

2. Value-based RL & Policy-based RL
3. Policy Gradient

4. Advantage Actor-Critic(A2C)

5. Asynchronous Advantage Actor-Critic(A3C)
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A little bit hard mathematics & statistics,

7. PreximatH eoliey-Optimization(PRO) To be presented next!
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Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm. called Trust Region Policy
Optimization (TRPO). This algorithm 1s similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atar
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Tetnis 1s a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task
2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovic| 20009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods

(Nemirovskil [2005). Continuous grzu:hent -based optimiza-
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"Trust region policy optimization."

Machine Learning. 2015. (cited 1113)
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If you can't explain
it simply, you
don't understand it
well enough.

Albert Einstein / @Inspiring Thinkn



This paper has a very theoretical approach and is difficult!
First, | would like to apologize to the junior researchers®

Later, as you study Reinforcement Learning,
look back at this material when you meet this paper!
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Prefiminaries ...

= Markov Decision Processes tuple : (8, A, P,r,pg,7)
- § : Afinite set of states
- A : Afinite set of actions
- P : The transition probability distribution(P : § X A X § = R)
- r : The reward function(r : § = R)
- po * The distribution of the initial state sy(py : § = R)

- ¥ : The discount factor(y € (0,1))

= Policy
- 1t : A stochastic policy(m: S X A = [0,1])
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Preliminaries

= Expected cumulative discounted reward

101) = Bsyay,. IZ ytr(sa],

t=0
where so~po(so), ar~m(aclse), Se41~P(Se41lst, ar)

= State-action value function Q,,

Qﬂ:(stl a’t) = ]ESt+1,at+1,... |:z ylr(st'l‘l)]
[=0

= State value function V;,

Vn(st) = IEat,sH_l,... lz: Vlr(5t+l)]
[=0

= Advantage function A,

ATL’(SI Cl) = QTC(SJ Cl) _ VTL’(S)J
where a;~m(a;|s;), Ses1~P(St41lse,as) fort =0
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Prefiminaries ...

= Useful identity, Kakade & Langford(2002), Appendix A

n(@) = n(m) + Eso,ao,...~n z ytA (St ap)|,

where Eg .  #l..]indicates that actlons are sampled at~7r( |S¢)

= (Unnormalized) Discounted visitation frequencies

,Dn(S) — P(So =5)+yP(s; =5) +]/2P(52 =5)+ -,

where sy~p, and the actions are chosen according to

12



t—0

=44+05+-3+4+05*«(0+025*—-1+4+0.75%1)
=4—-1.5 + 0.5 0.5

=25 + 0.25

= 2.75



Prefiminaries ...

= We can rewrite Equation (1) with Sum over states instead timestep

1) = 100 + Esya.t | ) ¥ An(50,ar)

l o ~ Sum over timestep

1) =n(m + ) Y Pls; = s|ﬁ>2ﬁ<a|s)yt/1n<s @

t=0 s

= n(m) + ZZytP(st - s|n>z (als)An (s, 0)

s t=0

=n(m) + z px(S) z fi(a|s)Ax (s, a) Sum over states
S a
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Prefiminaries ...

= S0, what does that mean?

1) =0 + ) pa(s) ) F(@ls)Ar(s,)

- Any policy update m — 7 that has a nonnegative expected advantage at every state s,
L.e. Y., (al|s)A,(s,a) = 0, is guaranteed to increase policy performance n, or leave it
constant in the case that the expected advantage is zero everywhere

* e.d. policy iteration
f(s) = argmax A, (s, a)
a
* But, in the approximate setting, there are estimation and approximation error, some

states s have negative expected advantage

Z (al|s)A,(s,a) <0

15



Prefiminaries ...

= The complex dependency of pz(s) on @ makes Equation (2) difficult to optimize
directly. Instead, we introduce the following local approximation to n:

1) =0 + ) pals) ) #(als)An(s,0)

La() = () + Z px(s) Z (al5)Ar(s, )

* L, uses the visitation frequency p, (s) rather than pn(s) ignoring changes in state visitation
denS|ty due to changes in the policy

- However, if we have parameterized policy mg(differentiable), then L, matched n to first
order(Kakade & Langford (2002))

« That is, for any parameter value 6,,

L7T90 (neo) = T](ngo),

Vglﬂteo (7'[9)'9:90 = \7977(”9)|0=90 16
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Prefiminaries ...

= S0, what does that mean?
LT[HO (7'[90) — 777-[6’0
Vo Ly, (ma)lg=6, = 7en(1g)|9=g,

- A sufficiently small step g, — 7 that improves L will also improve n

T6o14
- But, it does not give us any guidance on how big of a step to take...
 To address this issue, Kakade & Langford(2002) again...!

= Conservative policy iteration
Thew(als) = (1 — a)myq(als) + am' (als)

T,q - Current policy
m = argmax L, . (7)
=

20



Prefiminaries ...

= Conservative policy iteration
Tnew(als) = (1 — a)myg(als) + am (als)

- Kakade and Langford derived the following lower bound:

2€y 5
n(nnew) 2 LTCold (T[new) _ (1 _ )2 a

where € = max |Eq~mcais)[Ar (s, a)]l.

* But, this bound only applies to mixture policies

* It Is desirable for a practical policy update scheme to be applicable to all general
stochastic policy classes! (Finally, we are ready to see the TRPO...!)

21



2. Monotonic Improvement Guarantee

for General Stochastic Policies




= By replacing a with distance measure between  and 7, and changing
the e appropriately, we can extend Equation(6) to general stochastic
policies
- Total Variation Divergence

1
Dry(pllg) == ) |pi — qil
2 L

D (m, &) = max Dy (- |3) || 7(- 5))

Theorem 1. Let a = D7y (1t y1q, Tnew)- Then the follwing bound holds:

dey
N(Thew) = Lnold(ﬂnew) — (1—7)2 a‘,

where € = max |A;(s,a)|
S,a

23
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Dry*™ (m, @) = max Dy (- |s) || (- |5))
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= Kakade & Langford — John Schulman

2€y
> L — 2,
n(ﬂnew) TTold (T[new) (1 _ y)z a

where € = max |Eq~mcais)[Ar (s, a)]l.

l 4ey 5

> | _ ,
N(Tnew) = Told (Tnew) (1—7)2 a

where € = max |A;(s,a)|
S,a

 Additionally, Pollard(2000)
D7y (0||9)*< Di1(pl1q)

Let D (m, 1) = max Dy ((- |s) || 72(- |s))
S

So, we get:
n(@) = Ly(ft) — CDg ™ (m, @),

4ey
(1—-y)?

where C =

25



= Policy iteration algorithm guaranteeing non-decreasing expected return n

Algorithm 1 Policy iteration algorithm guaranteeing non-
decreasing expected return 7

Initialize .

for: =0,1,2,... until convergence do
Compute all advantage values A, (s, a).
Solve the constrained optimization problem

i1 = argmax L. (7)) — CDgr (m;, 7))

T

where C' = 4evy /(1 —~)?
and L, (m)=n(m; +Zpﬂ

end for

» The Algorithm uses a constraint on the KL divergence rather than a penalty to robustly allow
large updates



= Does it guarantee to generate a monotonically improving sequence of
policies n(my) < n(my) < n(my) < ---? Yes!

- To see this, let M;(n) = Ly (m) — CDg** (m;, ) : surrogate function, Then,
n(miy1) = M;(m41) by Equation(9)
n(m;) = M;(m;), therefore,

n(miyq) — () = Mi(myyq) — M)

* Thus, by maximizing M;, at each iteration, we guarantee that the true objective n
IS non-decreasing

27




Algorithm 1

SURROGATE FUNCTION M;(7) = Ly (w) — CDR{* (m. )

1.

ACTUAL FUNCTION 1)(7)

MAX ™ ITER T




3. Optimization of Parameterized Policies




plmlzalon ‘ arameerlze OICIGS

= Consider parameterized policies mg(als)
« So change the notations

n(0) = n(my)
Le(0) = Ly, (m5)
DKL(9||§) = Dg (mg||g)

* True objective n that we are guaranteed to improve

maxgmize[Lgold (6) — CDE (0514, 0)]

30



= We want to take larger steps in robust way, but there is a problem

4e
maxiemize[Lgold(H) — CD**(8,,4,0)], where C = a _))//)2

 C is very large number(consider when y = 0.99)
» So step size should be smaller...

- One way to take larger steps iIs to use a constraint on the KL divergence
between the new policy and the old policy, I.e., a trust region constraint :

maxiHmize Lo, (6)
subject to D1 (0,14,60) < 6

31



= But... we have another problem
maxgmize Lo, (0)

subject to D1 (0y14,60) < 6

* [t imposes a constraint that the KL divergence is bounded at every point in the
state space

- Motivated by the theory, but impractical!

* Instead, we can use a heuristic approximation : the average KL divergence

D1, (61, 85) = Es ;[ Dicy, (1w, (- |5) || g, (- D).

maxi@mize Lo, (6)

subject to 5;:"” (Op1d> Onew) < 6

32



4. Sample-Based Estimation of the

Objective and Constraint




= Ok, How to change the Objective and Constraint to sample-based
monte-carlo estimation?
maxgmize Lo, (0)

subject to D Lol (Hold, Onow) <6

max1mlze ng 4 (S) z mg(als)Ag . (s, a)

Sub]ect to D Lol (Hold, Onow) < 6

= Let’s take some useful steps :

. 1
* Replace Y5 pr, . (s) [...] by the expectation EES’V'D”old[m]

* Replace advantage values Ay _,, by the Q-values Qg _,,
- Replace the sum over the actions by an importance sampling estimator

34
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= Let’s take some useful steps :
* Replace s pr,,,(s) [...] by the expectation ﬁES’V'D”old[m]

* Replace advantage values Ay _,, by the Q-values Qg _,,
- Replace the sum over the actions by an importance sampling estimator

Tlg (alsn)
q(alsy)

z g (alSn)Aeold (Sn: a) — IE':a~q l Aeold (Sn' a)]

a
q(old policy) : sampling distribution

- So we can write the formula in terms of expectations :

mg(als)
q(als) Qeold (S' Cl)]

subject to ES“’Pnozd [DKL(né’ozd(' 1s) || mo (¢ |S)] <o

maximize [E._ -
0 S~Pry1q0% q[

36



= Single Path
 Collect a sequence of states by sampling sy~p,
=q

* Generate some number of timesteps’ trajectory using g _
So0,A0,S1,A1, -, ST-1,AT-1, ST
* Qp,,,(s,a) Is computed at each state-action pair (s;, a;) by taking the discounted

sum of future rewards

. . samplin
trajectories _p g .
trajectories,¢
4' LT
two rollouts

-
-
iiiiii
L]

- (als) Sn an using CRN
{
Qeold (Sr a) { all state-action
pairs used in
objective
rollout set

maxtlgmlze [Es~p”old’a~q 7(als)

subject to ]ESN‘O”old [DKL(ngold(- |5) || o (- |S)] <o
Single Path Vine
37



5. Experiment and Result




= Learning curves for locomotion tasks

Swimmer

réward

888
—_— Wi
— Eingl th
3 - — Natur; rad ien
o =885 — Empir FIm
CEn
e 1)
: —
] i : - . .18 : : .
B 18 F] 38 48 58 B 18 L] I8 a8 58
+ i i i 14 § - § 24 : : 14 " "
number of peolicy iteraticns number of policy iterations humber of policy iterations number of pelicy {terations

= Vision-based RL algorithms on the Atari domain

B. Rider Breakout Enduro Pong O*bert Seagquest 5. Invaders
Random 354 1.2 0 —20.4 157 110 179
Human (Mnih et al.||2013) 7456 3.0 368 —3.0 18900 28010 3690
Deep Q Learning 1Mnih et aI.HE'D] 3} 4092 168.0 470 20.0 1952 1705 581
UCC-1 1GUD et al.”E‘DM} 5702 380 741 21 20025 2995 692
TRPO - single path 1425.2 10.8 3346 20.9 1973.5 1908.6 568.4
TRPO - vine 859.5 34.2 430.8 20.9 T132.5 T8E.A4 450.2
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ummary

3. Approximately solve this constrained optimization

. Use the single path or vine procedures to collect a set 2. By averaging over samples, construct the estimated problem to update the policy’s parameter vector .
of state-action pairs along with Monte Carlo estimates objective and constraint in Equation {T9). We use the conjugate gradient algorithm followed by
of their Q-values. a line search, which is altogether only slightly more

expensive than computing the gradient itself. See Ap-
pendix [Clfor details.

Iv.:-«:!or.os:-' '..-. .
T 4 N a '"'...-.0° two follouts - i T.'()((Il.s‘) 3
s‘ an /——S'——\.—¥—‘/ oo l'l*lXIolllll‘(‘ E"‘\p”nlcl'“‘\q (l((‘|s) Qo-.l.l (3. (’) ( l4)

./.’—*l-m/!:xhon

,_ susueitn & el subject 10 E,,,  [Dkr(7a,,(-|8) || mo(-]8))] < 6.
- objective — g ot
po po rollout set

Plug the calculated Q values

+

N 92
B f')()(.)(')();DKL("()..m('Isn) | wa(-[sn))-

Policy update directions are

Find Monte Carlo Estimates of conjugate w.r.t F.I.M

Q values for (s,a) samples

Plug old action prob for KL Div (Fisher Information Matrix)
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