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Introduction

Domain

« Nuclei instance segmentation in histopathology images
« Important step in the digital pathology workflow

« Athologists are able to diagnose and prognose cancers according to--

" mitosis counts
= the morphological structure of each nucleus
= spatial distribution of a group of nuclei
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Introduction

Unsupervised Domain Adaptation
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« Supervised learning relies on large-scale training data, so requires expertise for

annotation

« Unsupervised domain adaptation (UDA) tackle the issue by conducting
supervised learning reduces distances between the distribution of feature maps

of the source and target domains
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Introduction

Limitation of UDA

« Currently, there is a lack of UDA methods specifically designed for instance

segmentation and still suffers from challenges

= Challenge 1: UDA ignore the domain shift at the semantic level, such as -
the relationship between the foreground and background

spatial distribution of the objects

= Challenge 2: UDA object detection methods are multi-task learning

i the feature extractors fail to generate domain-invariant, then back-
propagating the weights according to the task loss functions causes the

model bias towards the source domain

5 Dongguk AL LAB. Sung-eun Jang



Introduction

Proposed method

» Cycle-Consistent Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) model

1. Asimple nuclei inpainting mechanism to remove false-positive objects in

the synthesized images

2. Domain-invariant features at the panoptic level, by integrating the

instance-level adaptation with a semantic-level adaptation module

3. Atask re-weighting mechanism is proposed to alleviate the domain bias

towards the source domain

= Outperforms state-of-the-art UDA & supervised methods

6 Dongguk AL LAB. Sung-eun Jang



Method
Overall architecture, CyC-PDAM
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Figure 2. Overall architecture for our proposed CyC-PDAM architecture. The annotations of the real histopathology patches are not used
during training.

Based on CyCADA

« Instance segmentation framework Mask R-CNN
*  Nuclei inpainting mechanism

« Panoptic-level domain adaptation

« Task re-weighting mechanism



Method

CyCADA with Mask RCNN

Image-level discriminator
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GRL: gradientreversal layer
RPN: region proposal network

« Domain adaptive Mask R-CNN with ResNet101 and FPN backbone

« Twodiscriminators

= After FPN for the image-level adaptation

After the instance branch for instance-level adaptation
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Method

Nuclei Inpainting Mechanism

Figure 4. Visual results for the effectiveness of nuclei inpainting
mechanism. (a) original fluorescence microscopy patches; (b) cor-
responding nuclei annotations; (¢) initial synthesized images from
CycleGAN; (d) final synthesized images after nuclei inpainting
mechanism.
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« Label space for the generated images sometimes changes after transferring

from the source domain

=>» can be an obstacle to the training of the model

*  Propose an auxiliary nuclei inpainting mechanism to remove the auxiliary

objects in the synthesized images, to further avoid false-negative predictions



Method

Nuclei Inpainting Mechanism

My = (otsu(Spaw) UM) — M

Sraw : raw synthesized histopathology image by Cycle-GAN
M :corresponding mask
M, . mask predictions of all the auxiliary generated nuclei

otsu(Sraw) @ binary segmentation method for Speew based on Otsu threshold

= First, obtain the mask predictions M, ©f all the auxiliary generated nuclei

2>In M, onlyauxiliary nuclei without annotation is labeled

Dongguk AL LAB. Sung-eun Jang



Method

Nuclei Inpainting Mechanism

Sz'np — inp(smwa Mau:c)

Sinp + nNewly synthesized image

mp  : inpainting objects by replacing the pixel values for the auxiliary nuclei

labeled in - M,z With them for the unlabeled background

= image-level adaptation is able to avoid false-negative predictions by alleviating
the domain bias on global visual information, such as curve, texture, and

illumination
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Method

Panoptic Level Domain Adaptation
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« Propose a semantic-level adaptation to induce the model to learn domain-

invariant features based on the relationship between the foreground and

background

« By incorporating semantic- and instance-level adaptation, the model can learn

domain-invariant features at the panoptic level
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Method

Task Re-weighting Mechanism
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« The cross-domain discrepancies of these feature maps are still large in some

training iterations

* Propose a task re-weighting mechanism

« According to the prediction of the domain discriminator, add a trade-off weight

for each task—specific loss function method
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Method

Network Overview and Training Details

« Qverall loss function

task re-weighting

Lpdam — aimgLrpn + ainsILdet + asemL(sem—seg)

+ Qda L(z’mg—da)l + L(sem—da) + L(ins—da))

cross entropy losses
for domain classification atimage

Lirpr, loss function for the RPN
Lget loss of class & bounding box & instance mask prediction(Mask R—CNN)

_L(sem_seg) cross entropy loss for semantic segmentation
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Experiment & Conclusion

Dataset Description and Evaluation Metrics

« Dataset
= Kumar (histopathology datasets)
= TNBC (histopathology datasets)

= BBBCO39V1 (fluorescence microscopy dataset)

« Evaluation metrics
= aggregated Jaccard Index
= object-level F1 score

= pixel-level F1 score

Dongguk AL LAB. Sung-eun Jang



Experiment & Conclusion

Experiment Setting

«  Two nuclei segmentation tasks

= adapting from BBBCO39V1 to Kumar

= adapting from BBBCO39V1 to TNBC

As the source domain in two experiments, 100 training images and 50 validation images
from BBBCO39V1 are used
* Preprocessing
= normalized into range [0, 255]
= cropping, rotation, scaling, and flipping
= patches with fewer than 3 objects are removed

= inverse the pixel value of foreground nuclei and background for all source

fluorescence microscopy patches

Dongguk AL LAB. Sung-eun Jang




Experiment & Conclusion

Comparison Experiments

BBBC039 — Kumar

BBBC039 — TNBC

Methods AlJl Pixel-F1 Object-F1 All Pixel-F1 Object-F1
CyCADA [15] | 0.4447 £ 0.1069 | 0.7220 £ 0.0802 | 0.6567 £ 0.0837 | 0.4721 £ 0.0906 | 0.7048 £ 0.0946 | 0.6866 + 0.0637
Chen et al. [4] | 0.3756 £ 0.0977 | 0.6337 &£ 0.0897 | 0.5737 £ 0.0983 | 0.4407 £ 0.0623 | 0.6405 £ 0.0660 | 0.6289 £ 0.0609

SIFA [2] 0.3924 + 0.1062 | 0.6880 £ 0.0882 | 0.6008 £ 0.1006 | 0.4662 4 0.0902 | 0.6994 £ 0.0942 | 0.6698 £ 0.0771
DDMRL [21] | 0.48G0 £ 0.0846 | 0.7109 £ 0.0744 | 0.6833 £ 0.0724 | 0.4642 £ 0.0503 | 0.7000 £ 0.0431 | 0.6872 % 0.0347
Hou er al. [16] | 0.4980 £ 0.1236 | 0.7500 £ 0.0849 | 0.6890 £ 0.0990 | 0.4775 £ 0.1219 | 0.7029 £ 0.1262 | 0.6779 £ 0.0821

Proposed 0.5610 + 0.0718 | 0.7882 +0.0533 | 0.7483 £ 0.0525 | 0.5672 4 0.0646 | 0.7593 + 0.0566 | 0.7478 + 0.0417

Table 3. In comparison with other unsupervised methods on both two histopathology datasets.
All Pixel-F1
Methods seen unseen all seen unseen all
CNN3 [24] 0.5154 4+ 0.0835 | 0.4989 £ 0.0806 | 0.5083 £ 0.0695 | 0.7301 £ 0.0590 | 0.8051 4+ 0.1006 | 0.7623 £ 0.0946
DIST [35] 0.5594 + 0.0598 | 0.5604 &= 0.0663 | 0.5598 = 0.0781 | 0.7756 £ 0.0489 | 0.8005 £ 0.0538 | 0.7863 £ 0.0550
Proposed 0.5432 £ 0.0477 | 0.5848 £ 0.0951 | 0.5610 & 0.0982 | 0.7743 £ 0.0358 | 0.8068 £ 0.0698 | 0.7882 £ 0.0533

Upper bound [22]

0.5703 4= 0.0480

0.5778 £ 0.0671

0.5735 = 0.0855

0.7796 + 0.0419

0.8007 £ 0.0511

0.7886 = 0.0531

Table 5. Comparison experiments between our UDA method and fully supervised methods, for BBBC039V| to Kumar experiment. For
CNN3 and DIST, the results of object-level F1 are unknown.

AJl Pixel-F1 Object-F1
w/o NI | 0.5042 £ 0.1034 | 0.7336 £0.0839 | 0.6958 £ 0.0832
w/o TR | 0.4969 £+ 0.0972 | 0.7654 + 0.0678 | 0.6923 £+ 0.0778
w/o SEM | 0.5046 £ 0.1065 | 0.7470 4+ 0.0754 | 0.6965 + 0.0805
proposed | 0.5610 4+ 0.0718 | 0.7882 + 0.0533 | 0.7483 4 0.0525

Table 4. Ablation study on BBBC039V1 to Kumar experiment. NI, TR, and SEM represent the
nuclei inpainting mechanism, task re-weighting mechanism, and semantic branch, respectively.

Dongguk AL LAB. Sung-eun Jang



Experiment & Conclusion

Comparison Experiments

GT Proposed w/o NI w/io TR  w/o SEM

Figure 6. Visualization results for the ablation experiment. NI:
nuclei inpainting mechanism; TR: task re-weighting mechanism;
SEM: semantic branch.

CYCADA Chenetal SIFA DDMRL  Houetal Proposed GT

Figure 5. Visualization result for the comparison experiments ex-
periment. The first 3 rows are from Kumar dataset, and the last 3
rows are from TNBC.
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Experiment & Conclusion

Conclusion

«  Propose a CyC-PDAM architecture for UDA nuclei segmentation in

histopathology images

= Design a baseline architecture for UDA instance segmentation, including

semantic-, image-, and instance-level adaptation

= Nuclei inpainting mechanism is designed to remove the auxiliary objects in

the synthesized images

= Task re-weighting mechanism is proposed to reduce the bias

« Extensive experiments on three public datasets indicate proposed method
outperforms the state-of-the-art UDA methods by a large margin and reaches

the same level as the fully supervised methods

Dongguk AL LAB. Sung-eun Jang
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Method

Overall architecture, CyC-PDAM
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Method

CyCADA with Mask R-CNN

Name | Hyperparamaters Output size
Input 256 X 8 x 8
Convl | k=(3,3),s=1,p=1 | 256 x 8 x 8
Conv2 | k=(3,3),s=1,p=1| 512 x8x8
Conv3 | k=(3,3),s=1,p=1]512x8x8
Conv4 | k=(1,1),s=1,p=0] 2x8x8
Table 1. The parameters for each block in the image-level discrim-
inator for PDAM. k, s, and p denote the kernel size, stride, and
padding of the convolution operation, respectively.
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Method

Panoptic Level Domain Adaptation

Name Hyperparamaters Output size

Input 2 x 256 x 256
Cl k=(7,7),s=2,p=3| 64 x 128 x 128
RlilandRI2 | k=(3.3),s=1,p=1 | 64 x 128 x 128
C2 k=(55),s=2,p=2| 128 x 64 x 64
R21andR22 | k= (3,3).s=1.p=1 | 128 x 64 x 64
C3 k=(55),s=2,p=2| 256 x 32 x 32
R3landR32 | k=(3.3),s=1.p=1 | 256 x 32 x 32
c4 k=(55),s=2,p=2]|512x16 x 16
R4l andR42 | k=(3.3),s=1.p=1 | 512 x 16 x 16
C5 k=(1,1),s=1,p=0 ] 2x16 x 16

Output 2x16 x 16

Table 2. The parameters for each block in the semantic-level dis-
criminator for PDAM. £k, s, and p follow the same convention as

in Table
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Method

Network Overview and Training Details

2
Qg = 1
T exp(—10¢)

t isthe training progressand t € [0, 1]

gradually changed from O to 1, to avoid the noise from the
unstable domain discriminators in the early training stage
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Experiment & Conclusion

Dataset Description and Evaluation Metrics

» aggregated Jaccard Index
N i
Zi:l |Gi M PM|
N i
>oic1|Gi U Pyy| + X pep | Prl

Pj'/f generation of mask communication domain

G;  ithnucleus from the ground truth

N number of nuclei

 F1 score

Precision * Recall
2 *

Precision + Recall

TruePositives
Precision = TruePositives + FalsePositives

TruePositives

Recall = TruePositives + FalseNegatives
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