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Domain

• Nuclei instance segmentation in histopathology images

• Important step in the digital pathology workflow

• Athologists are able to diagnose and prognose cancers according to…

 mitosis counts
 the morphological structure of each nucleus
 spatial distribution of a group of nuclei
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Unsupervised Domain Adaptation

• Supervised learning relies on large-scale training data, so requires expertise for 

annotation

• Unsupervised domain adaptation(UDA) tackle the issue by conducting 

supervised learning reduces distances between the distribution of feature maps 

of the source and target domains
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Limitation of UDA

• Currently, there is a lack of UDA methods specifically designed for instance 

segmentation and still suffers from challenges

 Challenge 1: UDA ignore the domain shift at the semantic level, such as …

the relationship between the foreground and background

spatial distribution of the objects

 Challenge 2: UDA object detection methods are multi-task learning 

if the feature extractors fail to generate domain-invariant, then back-

propagating the weights according to the task loss functions causes the 

model bias towards the source domain
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Proposed method

• Cycle-Consistent Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) model 

1. A simple nuclei inpainting mechanism to remove false-positive objects in 

the synthesized images

2. Domain-invariant features at the panoptic level, by integrating the 

instance-level adaptation with a semantic-level adaptation module

3. A task re-weighting mechanism is proposed to alleviate the domain bias 

towards the source domain

Outperforms state-of-the-art UDA & supervised methods
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• Based on CyCADA 

• Instance segmentation framework Mask R-CNN

• Nuclei inpainting mechanism

• Panoptic-level domain adaptation 

• Task re-weighting mechanism

Overall architecture, CyC-PDAM

histopathology 
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fluorescence 
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• Domain adaptive Mask R-CNN with ResNet101 and FPN backbone

• Two discriminators

 After FPN for the image-level adaptation

 After the instance branch for instance-level adaptation

CyCADA with Mask RCNN



Method

Dongguk AI. LAB.  Sung-eun Jang9

• Label space for the generated images sometimes changes after transferring 

from the source domain

 can be an obstacle to the training of the model

• Propose an auxiliary nuclei inpainting mechanism to remove the auxiliary 

objects in the synthesized images, to further avoid false-negative predictions

Nuclei Inpainting Mechanism
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Nuclei Inpainting Mechanism

:  raw synthesized histopathology image by Cycle-GAN

:   corresponding mask

:   mask predictions of all the auxiliary generated nuclei

:    binary segmentation method for based on Otsu threshold

First, obtain the mask predictions of all the auxiliary generated nuclei

In                    only auxiliary nuclei without annotation is labeled
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Nuclei Inpainting Mechanism

image-level adaptation is able to avoid false-negative predictions by alleviating 

the domain bias on global visual information, such as curve, texture, and 

illumination

labeled in                  with them for the unlabeled background

:  newly synthesized image

:   inpainting objects by replacing the pixel values for the auxiliary nuclei
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• Propose a semantic-level adaptation to induce the model to learn domain-

invariant features based on the relationship between the foreground and 

background

• By incorporating semantic- and instance-level adaptation, the model can learn 

domain-invariant features at the panoptic level

Panoptic Level Domain Adaptation
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• The cross-domain discrepancies of these feature maps are still large in some 

training iterations

• Propose a task re-weighting mechanism

• According to the prediction of the domain discriminator, add a trade-off weight 

for each task-specific loss function method

Task Re-weighting Mechanism

final task prediction of target domains

task-specific loss function

threshold value

re-weighted task-specific loss
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Network Overview and Training Details

• Overall loss function

loss function for the RPN

loss of class & bounding box & instance mask prediction(Mask R-CNN)

cross entropy loss for semantic segmentation

task re-weighting

cross entropy losses
for domain classification at image
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• Dataset

 Kumar (histopathology datasets)

 TNBC (histopathology datasets)

 BBBC039V1 (fluorescence microscopy dataset)

• Evaluation metrics

 aggregated Jaccard Index 

 object-level F1 score

 pixel-level F1 score

Dataset Description and Evaluation Metrics
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• Two nuclei segmentation tasks

 adapting from BBBC039V1 to Kumar

 adapting from BBBC039V1 to TNBC

As the source domain in two experiments, 100 training images and 50 validation images 

from BBBC039V1 are used

• Preprocessing

 normalized into range [0, 255]

 cropping, rotation, scaling, and flipping

 patches with fewer than 3 objects are removed

 inverse the pixel value of foreground nuclei and background for all source 

fluorescence microscopy patches

Experiment Setting
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Comparison Experiments
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Comparison Experiments
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• Propose a CyC-PDAM architecture for UDA nuclei segmentation in 

histopathology images

 Design a baseline architecture for UDA instance segmentation, including 

semantic-, image-, and instance-level adaptation

 Nuclei inpainting mechanism is designed to remove the auxiliary objects in 

the synthesized images

 Task re-weighting mechanism is proposed to reduce the bias

• Extensive experiments on three public datasets indicate proposed method 

outperforms the state-of-the-art UDA methods by a large margin and reaches 

the same level as the fully supervised methods

Conclusion



T h a n k   y o u
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Overall architecture, CyC-PDAM
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CyCADA with Mask R-CNN
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Panoptic Level Domain Adaptation
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Network Overview and Training Details

is the training progress and

gradually changed from 0 to 1, to avoid the noise from the
unstable domain discriminators in the early training stage



Experiment & Conclusion

Dongguk AI. LAB.  Sung-eun Jang25

• aggregated Jaccard Index

Dataset Description and Evaluation Metrics

• F1 score

generation of mask communication domain

ith nucleus from the ground truth

number of nuclei

Precision = 

Recall = 


