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Domain

• Nuclei instance segmentation in histopathology images

• Important step in the digital pathology workflow

• Athologists are able to diagnose and prognose cancers according to…

 mitosis counts
 the morphological structure of each nucleus
 spatial distribution of a group of nuclei
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Unsupervised Domain Adaptation

• Supervised learning relies on large-scale training data, so requires expertise for 

annotation

• Unsupervised domain adaptation(UDA) tackle the issue by conducting 

supervised learning reduces distances between the distribution of feature maps 

of the source and target domains
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Limitation of UDA

• Currently, there is a lack of UDA methods specifically designed for instance 

segmentation and still suffers from challenges

 Challenge 1: UDA ignore the domain shift at the semantic level, such as …

the relationship between the foreground and background

spatial distribution of the objects

 Challenge 2: UDA object detection methods are multi-task learning 

if the feature extractors fail to generate domain-invariant, then back-

propagating the weights according to the task loss functions causes the 

model bias towards the source domain
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Proposed method

• Cycle-Consistent Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) model 

1. A simple nuclei inpainting mechanism to remove false-positive objects in 

the synthesized images

2. Domain-invariant features at the panoptic level, by integrating the 

instance-level adaptation with a semantic-level adaptation module

3. A task re-weighting mechanism is proposed to alleviate the domain bias 

towards the source domain

Outperforms state-of-the-art UDA & supervised methods



Method

Dongguk AI. LAB.  Sung-eun Jang7

• Based on CyCADA 

• Instance segmentation framework Mask R-CNN

• Nuclei inpainting mechanism

• Panoptic-level domain adaptation 

• Task re-weighting mechanism

Overall architecture, CyC-PDAM
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• Domain adaptive Mask R-CNN with ResNet101 and FPN backbone

• Two discriminators

 After FPN for the image-level adaptation

 After the instance branch for instance-level adaptation

CyCADA with Mask RCNN
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• Label space for the generated images sometimes changes after transferring 

from the source domain

 can be an obstacle to the training of the model

• Propose an auxiliary nuclei inpainting mechanism to remove the auxiliary 

objects in the synthesized images, to further avoid false-negative predictions

Nuclei Inpainting Mechanism



Method

Dongguk AI. LAB.  Sung-eun Jang10

Nuclei Inpainting Mechanism

:  raw synthesized histopathology image by Cycle-GAN

:   corresponding mask

:   mask predictions of all the auxiliary generated nuclei

:    binary segmentation method for based on Otsu threshold

First, obtain the mask predictions of all the auxiliary generated nuclei

In                    only auxiliary nuclei without annotation is labeled
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Nuclei Inpainting Mechanism

image-level adaptation is able to avoid false-negative predictions by alleviating 

the domain bias on global visual information, such as curve, texture, and 

illumination

labeled in                  with them for the unlabeled background

:  newly synthesized image

:   inpainting objects by replacing the pixel values for the auxiliary nuclei
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• Propose a semantic-level adaptation to induce the model to learn domain-

invariant features based on the relationship between the foreground and 

background

• By incorporating semantic- and instance-level adaptation, the model can learn 

domain-invariant features at the panoptic level

Panoptic Level Domain Adaptation
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• The cross-domain discrepancies of these feature maps are still large in some 

training iterations

• Propose a task re-weighting mechanism

• According to the prediction of the domain discriminator, add a trade-off weight 

for each task-specific loss function method

Task Re-weighting Mechanism

final task prediction of target domains

task-specific loss function

threshold value

re-weighted task-specific loss
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Network Overview and Training Details

• Overall loss function

loss function for the RPN

loss of class & bounding box & instance mask prediction(Mask R-CNN)

cross entropy loss for semantic segmentation

task re-weighting

cross entropy losses
for domain classification at image
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• Dataset

 Kumar (histopathology datasets)

 TNBC (histopathology datasets)

 BBBC039V1 (fluorescence microscopy dataset)

• Evaluation metrics

 aggregated Jaccard Index 

 object-level F1 score

 pixel-level F1 score

Dataset Description and Evaluation Metrics
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• Two nuclei segmentation tasks

 adapting from BBBC039V1 to Kumar

 adapting from BBBC039V1 to TNBC

As the source domain in two experiments, 100 training images and 50 validation images 

from BBBC039V1 are used

• Preprocessing

 normalized into range [0, 255]

 cropping, rotation, scaling, and flipping

 patches with fewer than 3 objects are removed

 inverse the pixel value of foreground nuclei and background for all source 

fluorescence microscopy patches

Experiment Setting
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Comparison Experiments



Experiment & Conclusion

Dongguk AI. LAB.  Sung-eun Jang18

Comparison Experiments
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• Propose a CyC-PDAM architecture for UDA nuclei segmentation in 

histopathology images

 Design a baseline architecture for UDA instance segmentation, including 

semantic-, image-, and instance-level adaptation

 Nuclei inpainting mechanism is designed to remove the auxiliary objects in 

the synthesized images

 Task re-weighting mechanism is proposed to reduce the bias

• Extensive experiments on three public datasets indicate proposed method 

outperforms the state-of-the-art UDA methods by a large margin and reaches 

the same level as the fully supervised methods

Conclusion



T h a n k   y o u
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Overall architecture, CyC-PDAM
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CyCADA with Mask R-CNN
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Panoptic Level Domain Adaptation
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Network Overview and Training Details

is the training progress and

gradually changed from 0 to 1, to avoid the noise from the
unstable domain discriminators in the early training stage
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• aggregated Jaccard Index

Dataset Description and Evaluation Metrics

• F1 score

generation of mask communication domain

ith nucleus from the ground truth

number of nuclei

Precision = 

Recall = 


