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Semi-Supervised Learning
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• Using labelled as well as unlabelled data to perform certain 
learning tasks 



Data Augmentation

• Data augmentation significantly increases the diversity of 
data available for training our models, without actually 
collecting new data samples.

• Simple image data augmentation techniques like flipping, 
random crop, and random rotation are commonly used to 
train large models.
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Self-Training

• In this semi-supervised formulation, 
- a model is trained on labeled data and used to predict pseudo-

labels for the unlabeled data. 

- The model is then trained on both ground truth labels and pseudo-
labels simultaneously.

• a. Pseudo-label
- Dong-Hyun Lee proposed a very simple and efficient formulation 

called “Pseudo-label” in 2013.

- The idea is to train a model simultaneously on a batch of both 
labeled and unlabeled images.
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• The total loss is a weighted sum of the labeled and 
unlabeled loss terms.
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• b. Noisy Student
- Xie et al. proposed a semi-supervised method inspired by 

Knowledge Distillation called “Noisy Student” in 2019.

- The key idea is to train two separate models called “Teacher” and 
“Student”.
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Consistency Regularization

• This paradigm uses the idea that model predictions on an 
unlabeled image should remain the same even after adding 
noise.
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• π-model
- This model was proposed by Laine et al. in a conference paper at 

ICLR 2017.

- The key idea is to create two random augmentations of an image 
for both labeled and unlabeled data
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FixMatch

• FixMatch borrows this idea from UDA and ReMixMatch to 
apply different augmentation i.e weak augmentation on 
unlabeled image for the pseudo-label generation and 
strong augmentation on unlabeled image for prediction.
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• 1. Training Data and Augmentation
- a. Weak Augmentation

• Random Horizontal Flip

• Random Vertical and Horizontal Translation
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• 1. Training Data and Augmentation
- Strong Augmentation

• 1. Cutout

• 2. AutoAugment Variants
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• The values of N and M can be found by hyper-parameter 
optimization on a validation set with a grid search.

14



• 2. Model Training and Loss Function
- Step 1: Preparing batches

- Step 2: Supervised Learning
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- Step 3: Pseudolabeling
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- Step 4: Consistency Regularization
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- Step 5: Curriculum Learning
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Q. Can we learn with just one image per class?

• 8 training datasets with examples ranging from most 
representative to the least representative.

- Most representative bucket: 78% median accuracy with a 
maximum accuracy of 84%

- Middle bucket: 65% accuracy

- Outlier bucket: Fails to converge completely with only 10% accuracy
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Experiments
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