

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

Kihyuk Sohn*, David Berthelot*, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini Ekin D. Cubuk, Alex Kurakin, Han Zhang, Colin Raffel

Google Research

NeurIPS 2020, 176회 인용

Park, MinKyu

2021.03.12

Dongguk University

Artificial Intelligence Laboratory

* 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Semi-Supervised Learning

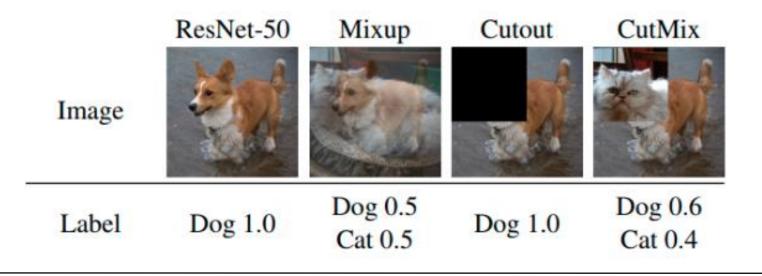
Using labelled as well as unlabelled data to perform certain learning tasks

Figure 3. Illustration of the usefulness of unlabeled data.

Data Augmentation

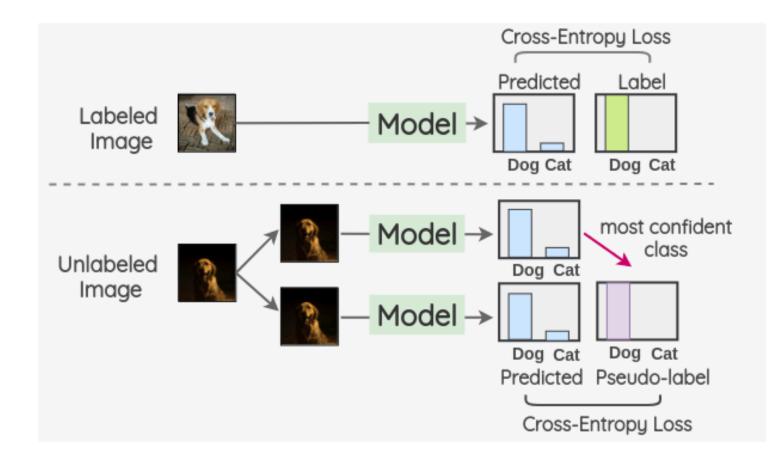
- Data augmentation significantly increases the diversity of data available for training our models, <u>without actually</u> <u>collecting new data samples</u>.
- Simple image data augmentation techniques like <u>flipping</u>, <u>random crop</u>, <u>and random rotation</u> are commonly used to train large models.

Overview of the results of Mixup, Cutout, and CutMix.



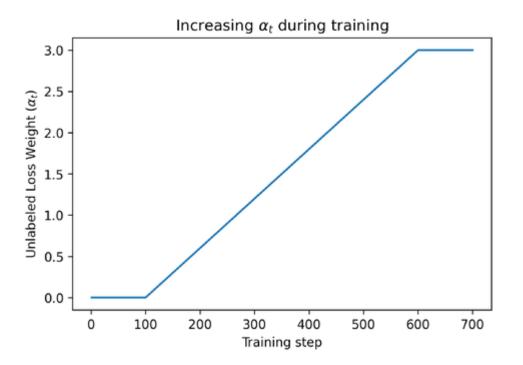
Self-Training

- In this semi-supervised formulation,
 - a model is trained on labeled data and used to predict pseudolabels for the unlabeled data.
 - The model is then trained on both ground truth labels and pseudolabels <u>simultaneously</u>.
- a. Pseudo-label
 - Dong-Hyun Lee proposed a very simple and efficient formulation called "Pseudo-label" in 2013.
 - The idea is to train a model simultaneously on a batch of both labeled and unlabeled images.

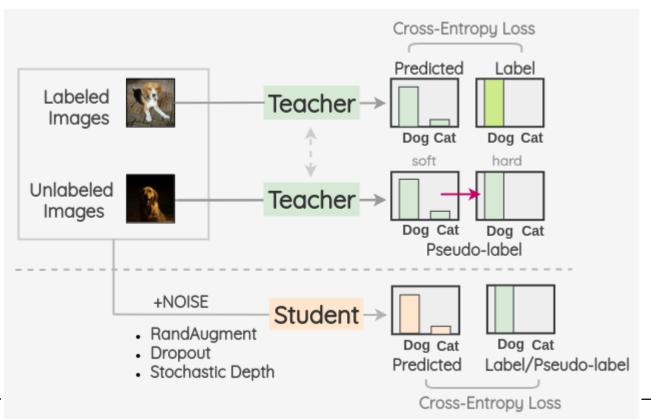


• The total loss is a weighted sum of the labeled and unlabeled loss terms.

$$L = L_{labeled} + \alpha_t * L_{unlabeled}$$



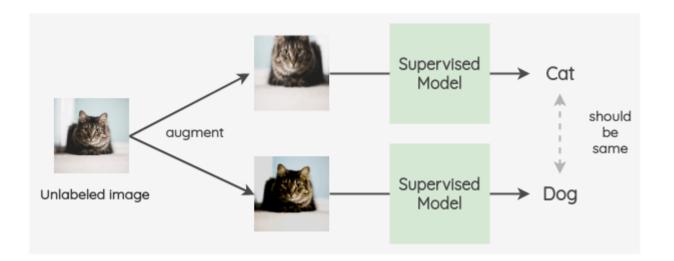
- b. Noisy Student
 - Xie et al. proposed a semi-supervised method inspired by Knowledge Distillation called "Noisy Student" in 2019.
 - The key idea is to train two separate models called "Teacher" and "Student".



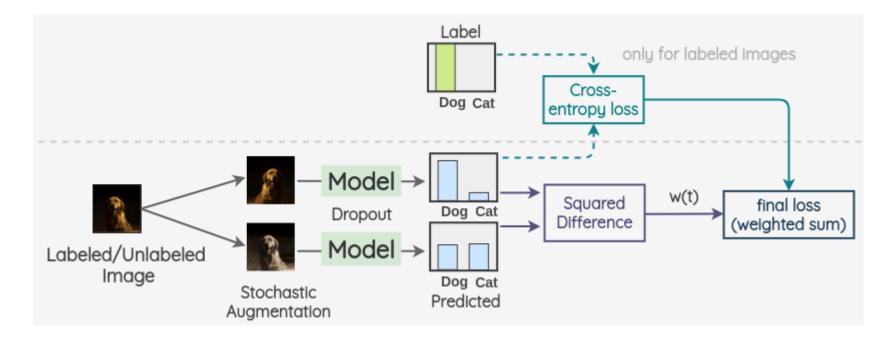
Artificial Intelligence Lat

Consistency Regularization

 This paradigm uses the idea that model predictions on an unlabeled image should remain the same even after adding noise.

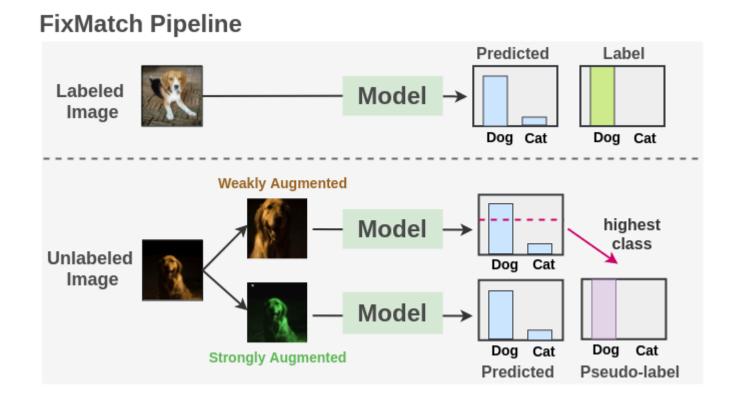


- π-model
 - This model was proposed by <u>Laine et al</u>. in a conference paper at ICLR 2017.
 - <u>The key idea is to create two random augmentations of an image</u> for both labeled and unlabeled data



FixMatch

 FixMatch borrows this idea from UDA and ReMixMatch to apply different augmentation i.e weak augmentation on unlabeled image for the pseudo-label generation and strong augmentation on unlabeled image for prediction.



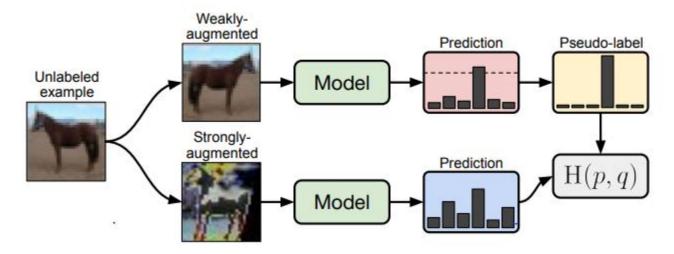
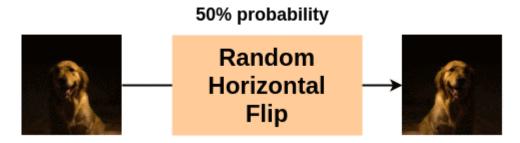


Figure 1: Diagram of FixMatch. A weakly-augmented image (top) is fed into the model to obtain predictions (red box). When the model assigns a probability to any class which is above a threshold (dotted line), the prediction is converted to a one-hot pseudo-label. Then, we compute the model's prediction for a strong augmentation of the same image (bottom). The model is trained to make its prediction on the strongly-augmented version match the pseudo-label via a cross-entropy loss.

• 1. Training Data and Augmentation

- a. Weak Augmentation
 - Random Horizontal Flip

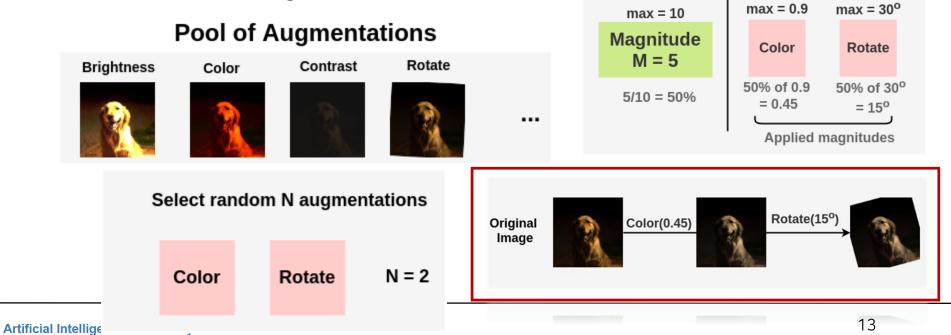


Random Vertical and Horizontal Translation

• 1. Training Data and Augmentation

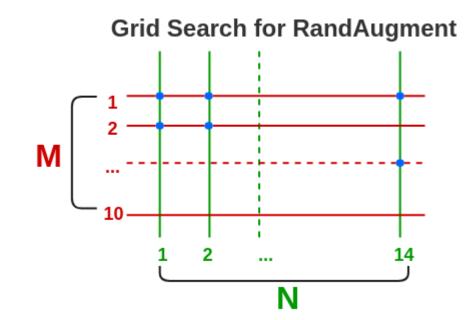
- Strong Augmentation
 - 1. Cutout

• 2. AutoAugment Variants



Department of Computer Engineering at Dongguk Univers

• The values of N and M can be found by hyper-parameter optimization on a validation set with a grid search.

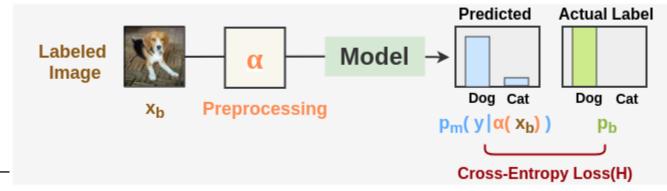


- 2. Model Training and Loss Function
 - Step 1: Preparing batches

Labeled batchUnlabeled batch \overbrace{Cat}^{A} \overbrace{Dog}^{A} $\overbrace{Iabeled}^{A}$ \overbrace{Cat}^{A} \overbrace{Dog}^{A} $\overbrace{Iabeled}^{A}$

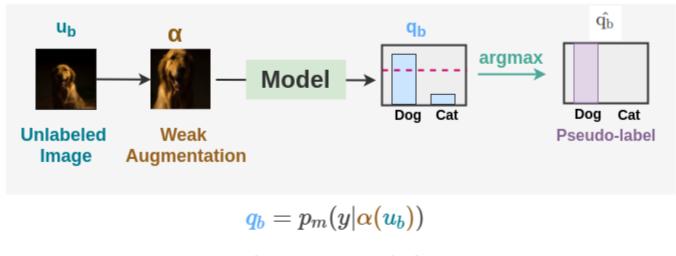
Step 2: Supervised Learning

Supervised Part of FixMatch



- Step 3: Pseudolabeling

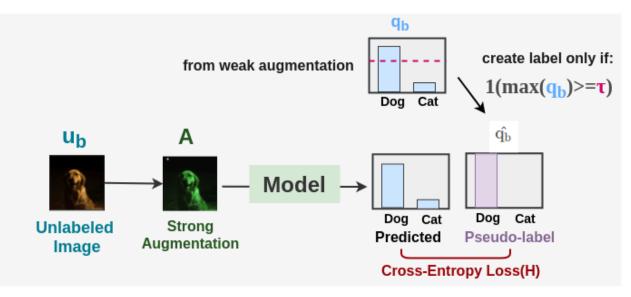
Pseudo-label generation



 $\hat{q_b} = argmax(q_b)$

- Step 4: Consistency Regularization

Consistency Regularization

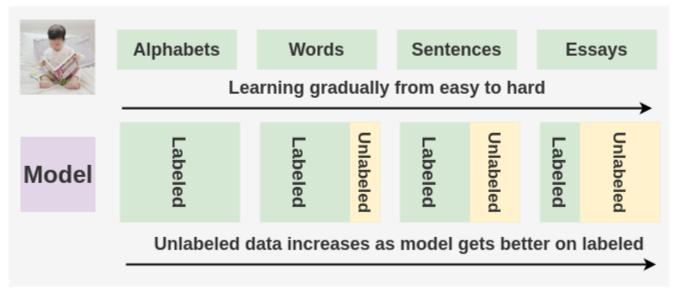


$$l_u = rac{1}{\mu B} \sum_{b=1}^{\mu B} 1(max(q_b) >= au) \; m{H}(\hat{q_b}, p_m(y|A(m{u_b}) \;)$$

- Step 5: Curriculum Learning

$$loss = l_s + \lambda_u l_u$$

Curriculum learning in FixMatch



Q. Can we learn with just one image per class?

- 8 training datasets with examples ranging from most representative to the least representative.
 - Most representative bucket: 78% median accuracy with a maximum accuracy of 84%
 - Middle bucket: 65% accuracy
 - **Outlier bucket**: Fails to converge completely with only 10% accuracy

Labeled data = only 10 images, 1 image per class

Experiments

	CIFAR-10			CIFAR-100			SVHN			STL-10
Method	40 labels	250 labels	4000 labels	400 labels	2500 labels	10000 labels	40 labels	250 labels	1000 labels	1000 labels
П-Model	-	54.26±3.97	14.01 ± 0.38	-	57.25 ± 0.48	37.88±0.11	-	18.96 ± 1.92	7.54±0.36	26.23±0.82
Pseudo-Labeling	-	49.78 ± 0.43	16.09 ± 0.28	-	57.38 ± 0.46	36.21±0.19	-	20.21 ± 1.09	9.94 ± 0.61	27.99 ± 0.83
Mean Teacher	-	32.32 ± 2.30	9.19±0.19	-	53.91±0.57	35.83 ± 0.24	-	3.57 ± 0.11	3.42 ± 0.07	21.43 ± 2.39
MixMatch	47.54 ± 11.50	11.05 ± 0.86	6.42 ± 0.10	67.61±1.32	39.94±0.37	28.31 ± 0.33	42.55 ± 14.53	3.98 ± 0.23	3.50 ± 0.28	10.41 ± 0.61
UDA	29.05 ± 5.93	8.82 ± 1.08	4.88 ± 0.18	59.28 ± 0.88	33.13 ± 0.22	24.50 ± 0.25	52.63 ± 20.51	5.69±2.76	2.46±0.24	7.66 ± 0.56
ReMixMatch	$19.10{\scriptstyle \pm 9.64}$	5.44 ± 0.05	4.72 ± 0.13	44.28±2.06	27.43 ± 0.31	$\textbf{23.03}{\scriptstyle \pm 0.56}$	3.34 ± 0.20	2.92 ± 0.48	2.65 ± 0.08	5.23±0.45
FixMatch (RA) FixMatch (CTA)	13.81±3.37 11.39±3.35	5.07±0.65 5.07±0.33	4.26±0.05 4.31±0.15	$\begin{array}{c} 48.85 {\scriptstyle \pm 1.75} \\ 49.95 {\scriptstyle \pm 3.01} \end{array}$	28.29 ± 0.11 28.64 ± 0.24	22.60±0.12 23.18±0.11	3.96±2.17 7.65±7.65	2.48±0.38 2.64±0.64	2.28±0.11 2.36±0.19	7.98 ± 1.50 5.17 ± 0.63

Table 2: Error rates for CIFAR-10, CIFAR-100, SVHN and STL-10 on 5 different folds. FixMatch (RA) uses RandAugment [11] and FixMatch (CTA) uses CTAugment [3] for strong-augmentation. All baseline models (II-Model [43], Pseudo-Labeling [25], Mean Teacher [51], MixMatch [4], UDA [54], and ReMixMatch [3]) are tested using the same codebase.

감사합니다.