Meta-Information Guided Meta-Learning for Few-Shot Relation Classification

Sanghyun Seo

May 24, 2021

Department of Computer Engineering at Dongguk University

Artificial Intelligence Laboratory

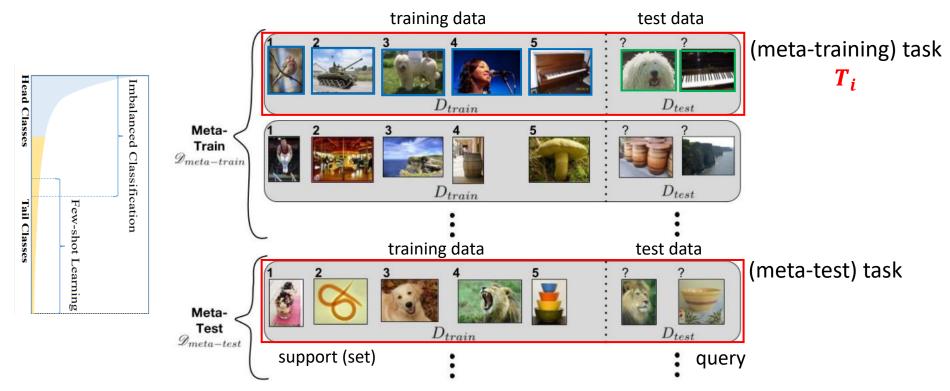
shseo@dongguk.edu

Papers

- Meta-Information Guided Meta-Learning for Few-Shot Relation Classification
 - Dong, Bowen, et al. Proceedings of the 28th International Conference on Computational Linguistics. 2020.

FSL Setting

- Meta-learning setup
 - $(D_{train} / D_{test}) / (D_{train} / D_{test}) \leftarrow Meta-Train / Meta-Test$
 - $D_i^{tr} = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}, D_i^{ts} = \{(x_1^i, y_1^i), \dots, (x_l^i, y_l^i)\}$
 - Task(episode) $T_i = \{D_i^{tr}, D_i^{ts}\}$



Ravi, Sachin, and Hugo Larochelle. "Optimization as a model for few-shot learning." (2016).

Tasks in few-shot NLP

- Domain as task
 - ARSC: multi-domain sentiment classification
 - 23 domains, 3 binary classification tasks
 → total 69 tasks (12 tasks, 4 domains are target tasks)
 - CNICN150: multi-domain intent classification
 - 10 domains, 15 intents (total 150 intents)
 → 22,500 labeled example, 1200 out-of-scope instances)
- Class as task
 - FewReI: few-shot relation classification
 - 100 relations (tr:64/dev:16/te:20), same domain(Wikipedia corpus and Wikidata knowledge bases)
 - → FewRel 2.0 added a new domain of test set and 'none-of-above' relation
 - **SNIPS:** few-shot intent classification
 - 7 intents (tr:5/te:2)

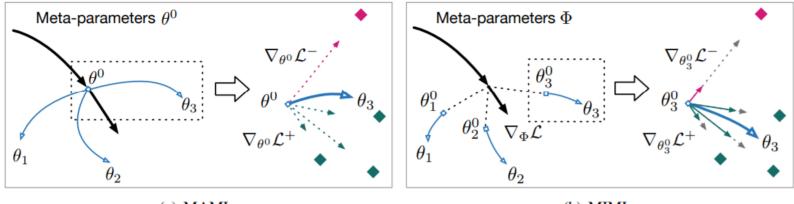
Yin, Wenpeng. "Meta-learning for few-shot natural language processing: A survey." arXiv preprint arXiv:2007.09604 (2020).

Background

- Challenges of meta learning
 - Using only support set to classify query set
 - Most meta-learning methods learn how to learn (i.e., how to initialize and adapt) **solely relying on instance statistics**, which inevitably suffer from data sparsity and noise in low-resource scenarios, especially in text domain
 - Lack of interpretability
 - The approach of learning to learn, like the learning process itself, is a black-box and thus **lacks interpretability**
 - Weakness of zero-shot learning
 - Most conventional meta-learning methods are designed for few-shot classification, and cannot well handle zero-shot scenarios, where no support instances are available

• MIML (Meta Information guided Meta Learning)

- 1) Instance encoder
- 2) Meta-information guided fast initialization
- 3) Meta-information guided fast adaptation
- 4) Meta-optimization



(a) MAML

(b) MIML

Figure 1: Diagram of meta-learning models. (a) MAML learns a class-agnostic representation θ^0 that can fast adapt to new classes. (b) MIML learns meta-parameters Φ to fast initialize class-aware parameter θ_i^0 , and to quickly adapt to new classes using informative instances, where both phases are guided by meta-information. Informative instances and noisy instances are marked accordingly.

- Instance encoder
 - BERT model to encode the instance into contextualized representations

$$\mathsf{x}_{j} = g(x_{j}, h, t; \phi_{e})$$

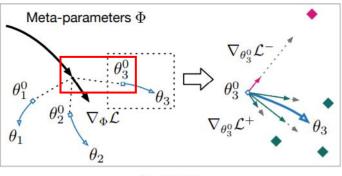
- x_j is the sentence, h and t are head and tail entities respectively. $g(\cdot)$ is the encoder, ϕ_e is the parameters of the encoder, and $x_j \in \mathbb{R}^{d_s}$ is the instance representation

- Meta-information guided fast initialization
 - Instead of using a static classagnostic initialization point for all classes as in MAML, MIML uses meta-information to estimate dynamic class-aware initialization parameters for each class
 - This alleviates the reliance on support instances to reach optimal adapted parameters

Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate 1: randomly initialize: $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters 2: while not done do 3: Sample batch of classes $C_i \sim p(C)$ 4: Sample support instance set S and query instance set Q5: for all C_i do 6: Fast initialize parameters of C_i : $\theta_i^0 = \Psi(c_i; \phi_n)$ 7: for t = 1, ..., T do

- 8: Compute gradients and learning rates for fast adaptation using support instance set S
- 9: Compute adapted parameters with gradient descent: $\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t, \{\phi_e, \phi_n\}}, x_j, y_j)$
- 10: Meta-optimize using query instance set Q: $\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T, \Phi}, x_j, y_j)$



(b) MIML

- Meta-information guided fast initialization
 - Given the name of a class C_i, the meta-information representation c_i
 ∈ ℝ^{d_w} is obtained by the average of the word embeddings of the name

$$\theta_i^0 = \Psi(c_i; \phi_n)$$

- where $\theta_i^0 \in \mathbb{R}^{d_s}$ is the class-aware initialization parameters for class C_i , $\Psi(c_i; \phi_n)$ is the **meta-initializer**, ϕ_n is the corresponding metaparameters

Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate 1: randomly initialize: $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters 2: **while** not done **do**

3: Sample batch of classes $C_i \sim p(C)$

4: Sample support instance set
$$S$$
 and query instance set Q

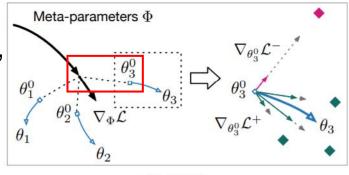
5: for all C_i do

6: Fast initialize parameters of
$$C_i$$
: $\theta_i^0 = \Psi(c_i; \phi_n)$

- 7: **for** t = 1, ..., T **do**
- 8: Compute gradients and learning rates for fast adaptation using support instance set *S*
- 9: Compute adapted parameters with gradient descent: $\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t, \{\phi_e, \phi_n\}}, x_j, y_j)$

10: Meta-optimize using query instance set
$$Q$$
:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T, \Phi}, x_j, y_j)$$



(b) MIML

Meta-information guided fast initialization

- $\Psi(\cdot)$ is implemented via a fully connected layer
- It usually is a rough in an early stage, but flexible estimation of a new concept based on its high-level semantics is possible

$$s_{i,j} = \theta_i^{0^T} x_j$$

- where $s_{i,j}$ is the score of x_j being an instance of C_i . The probability $p(y = C_i | x_j)$ is obtained by normalizing the score $s_{i,j}$ with a softmax layer over all classes $\{C_1, C_2, \dots, C_N\}$
- The model after fast initialization can be denoted as $f_{\theta_0,\{\phi_e,\phi_n\}}$, where $\theta^0 = \{\theta_1^0, \theta_2^0, \dots, \theta_N^0\}$ denotes initialized parameters

- Meta-information guided fast adaptation
 - The initialized parameters θ^0 are adapted via gradient descent steps according to the classification performance of instances on the support set *S*
 - The adaptation iterates dynamically for T steps

$$\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta_0,\{\phi_e,\phi_n\}}, x_j, y_j)$$

 L(·) denotes cross-entropy loss of a support instance

Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate 1: randomly initialize: $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters 2: while not done do 3: Sample batch of classes $C_i \sim p(C)$ 4: Sample support instance set S and query instance set Q5: for all C_i do

6: Fast initialize parameters of
$$C_i$$
: $\theta_i^0 = \Psi(c_i; \phi_n)$

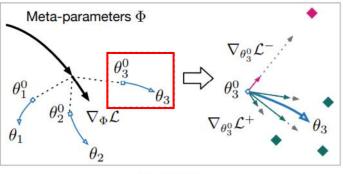
: for
$$t = 1, \ldots, T$$
 do

8: Compute gradients and learning rates for fast adaptation using support instance set S

 $\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t, \{\phi_e, \phi_n\}}, x_j, y_j)$

10: Meta-optimize using query instance set
$$Q$$
:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T, \Phi}, x_j, y_j)$$



(b) MIML

- Meta-information guided fast adaptation
 - To select informative instances for fast adaptation in MIML, instead of using a static learning rate for all instances, the learning rate of each instance is dynamically determined by a selective attention mechanism as follows:

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j} \exp(e_{i,j})}$$

- where $e_{i,j}$ is the score of instance x_j for class C_i .

Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate

1: randomly initialize:

 $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters

2: while not done do

- 3: Sample batch of classes $C_i \sim p(C)$
- 4: Sample support instance set S and query instance set Q
- 5: for all C_i do

5: Fast initialize parameters of
$$C_i$$
: $\theta_i^0 = \Psi(c_i; \phi_n)$

7: **for** t = 1, ..., T **do**

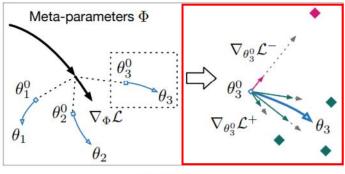
8: Compute gradients and learning rates for fast adaptation using support instance set S

9: Compute adapted parameters with gradient descent:

 $\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t, \{\phi_e, \phi_n\}}, x_j, y_j)$

10: Meta-optimize using query instance set
$$Q$$
:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T, \Phi}, x_j, y_j)$$



(b) MIML

- Meta-information guided fast adaptation
 - The score is obtained by:

$$e_{i,j} = q_i^T x_j$$

- Where $q_i \in \mathbb{R}^{d_s}$ is the query vector for class C_i
- Estimating the query vector from meta-information via a metaquerier module as follows:

$$q_i = \Psi(c_i;\phi_a)$$

Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate 1: randomly initialize: $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters

2: while not done do

3: Sample batch of classes $C_i \sim p(C)$

4: Sample support instance set
$$S$$
 and query instance set Q

5: for all C_i do

6: Fast initialize parameters of
$$C_i$$
: $\theta_i^0 = \Psi(c_i; \phi_n)$

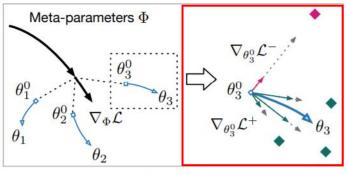
7: **for**
$$t = 1, ..., T$$
 do

8: Compute gradients and learning rates for fast adaptation using support instance set S

$$\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t, \{\phi_e, \phi_n\}}, x_j, y_j)$$

10: Meta-optimize using query instance set
$$Q$$
:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T \Phi}, x_i, y_i)$$



(b) MIML

- Meta-information guided fast adaptation
 - The score is obtained by:

$$e_{i,j} = q_i^T x_j$$

- where $q_i \in \mathbb{R}^{d_s}$ is the query vector for class C_i
- The estimated query vector from meta-information via a metaquerier module as follows:

 $q_i = \Psi(c_i;\phi_a)$

- Overfitting Problem
 - L2 normalization
 - Virtual adversarial training

- Meta-optimization
 - After fast adaptation on support instances, the meta-parameters $\Phi = \{\phi_e, \phi_n, \phi_a\}$ are optimized according to the performance of the adapted model on the query set *Q* as follows:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^{T}, \Phi}, x_{j}, y_{j})$$

 where β is the learning rate for meta-parameters Algorithm 1 Meta-Information Guided Meta-Learning

Require: p(C): distribution over classes **Require:** β : meta learning rate 1: randomly initialize: $\Phi = \{\phi_e, \phi_n, \phi_a\}$: meta-parameters 2: **while** not done **do** 3: Sample batch of classes $C_i \sim p(C)$

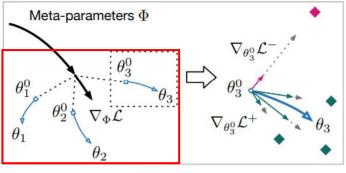
- 4: Sample support instance set S and query instance set Q
- 5: for all C_i do

6:

Fast initialize parameters of
$$C_i$$
: $\theta_i^0 = \Psi(c_i; \phi_n)$

- 7: for t = 1, ..., T do
- 8: Compute gradients and learning rates for fast adaptation using support instance set S
- 9: Compute adapted parameters with gradient descent: $\theta^{t+1} = \theta^t - \sum_{i,j} \alpha_{i,j} \nabla_{\theta^t} \mathcal{L}(f_{\theta^t}, \{\phi_e, \phi_n\}, x_j, y_j)$
- 10: Meta-optimize using query instance set Q:

$$\Phi = \Phi - \beta \nabla_{\Phi} \mathcal{L}(f_{\theta^T, \Phi}, x_j, y_j)$$



(b) MIML

- Implementation Details
 - Model: *BERT*_{base} with GloVe 50d word embeddings
 - class distribution p(C): uniform distribution
 - # of adaptation step: 150
 - optimizer: Adam
- Dataset & Evaluation Protocol
 - Dataset: FewRel(70,000 labeled sentences in 100 relations)
 - Evaluation: 5-way 1-shot, 5-way 5-shot, 10-way 1-shot, 10way 5-shot.
 - Baseline: MetaNets, GNN, SNAIL, ProtoNets, MLMAN, BERT-PAIR, ProtoNets(with BERT encoder), MAML(with BERT encoder)

Main results

 Meta-information guided fast initialization in MIML can produce more flexible class-aware initialization, which alleviates heavy reliance on support instances

Encoder	Model	5-way-1-shot	5-way-5-shot	10-way-1-shot	10-way-5-shot
CNN	Meta Network*	64.46 ± 0.54	80.57 ± 0.48	53.96 ± 0.56	69.23 ± 0.52
	GNN*	66.23 ± 0.75	81.28 ± 0.62	46.27 ± 0.80	64.02 ± 0.77
	SNAIL*	67.29 ± 0.26	79.40 ± 0.22	53.28 ± 0.27	68.33 ± 0.25
	Proto Network*	74.52 ± 0.07	88.40 ± 0.06	62.38 ± 0.06	80.45 ± 0.08
	MLMAN*	82.98 ± 0.20	92.66 ± 0.09	73.59 ± 0.26	87.29 ± 0.15
BERT	BERT-PAIR 🌲	88.32 ± 0.64	93.22 ± 0.13	80.63 ± 0.17	87.02 ± 0.12
	MAML	87.45 ± 0.11	94.39 ± 0.13	78.91 ± 0.14	89.14 ± 0.23
	Proto Network	86.50 ± 0.14	95.01 ± 0.15	82.86 ± 0.15	91.30 ± 0.11
	MIML	92.55 ± 0.12	96.03 ± 0.17	87.47 ± 0.21	93.22 ± 0.22
-	Human*	92.22	-	85.88	-

Table 1: Main results. Accuracies (%) on few-shot relation classification on FewRel test set. Results with * and \blacklozenge are from FewRel leaderboard and Gao et al. (2019b) respectively.

- Robustness to Noisy Instances
 - Randomly corrupt 0%, 10%, 20%, 30% support instances, by replacing them with noisy instances randomly sampled from different relations in FewRel

Model	Noise Rate	5-way-5-shot	10-way-5-shot	Noise Rate	5-way-5-shot	10-way-5-shot
MAML Proto Network Proto HATT MIML	0%	$\begin{array}{c} 92.59 \pm 0.08 \\ 92.62 \pm 0.11 \\ 93.43 \pm 0.09 \\ \textbf{95.60} \pm \textbf{0.09} \end{array}$	$\begin{array}{c} 85.79 \pm 0.15 \\ 87.12 \pm 0.12 \\ 89.37 \pm 0.17 \\ \textbf{91.60} \pm \textbf{0.21} \end{array}$	10%	$\begin{array}{c} 90.81 \pm 0.12 \\ 91.54 \pm 0.08 \\ 92.40 \pm 0.13 \\ \textbf{94.82} \pm \textbf{0.08} \end{array}$	$\begin{array}{c} 83.31 \pm 0.13 \\ 85.40 \pm 0.18 \\ 88.19 \pm 0.22 \\ \textbf{89.55} \pm \textbf{0.25} \end{array}$
MAML Proto Network Proto HATT MIML	20%	$\begin{array}{c} 88.40 \pm 0.10 \\ 91.04 \pm 0.08 \\ 91.27 \pm 0.15 \\ \textbf{93.19} \pm \textbf{0.10} \end{array}$	$\begin{array}{c} 80.77 \pm 0.13 \\ 83.18 \pm 0.17 \\ 85.94 \pm 0.29 \\ \textbf{87.70} \pm \textbf{0.23} \end{array}$	30%	$\begin{array}{c} 86.18 \pm 0.20 \\ 87.84 \pm 0.12 \\ 89.62 \pm 0.19 \\ \textbf{92.04} \pm \textbf{0.18} \end{array}$	78.30 ± 0.11 80.28 ± 0.19 83.14 ± 0.24 86.19 ± 0.27

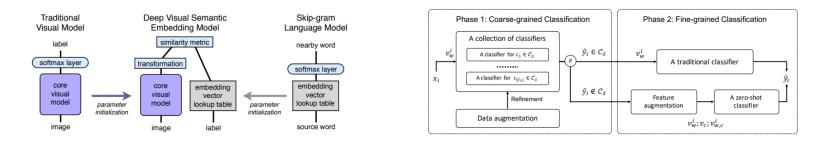
Table 2: Accuracies (%) on few-shot relation classification with noise on FewRel development set.

Zero-Shot Classification

- Remove the support instances in evaluation phase in 5-way and 10-way setting, and ask the model to classify query instances with class-aware initialization parameters
 - DeViSE model with BERT encoder
 - SK4 with rich semantic knowledge of classes, including word embeddings, class descriptions, class hierarchy, and commonsense knowledge graphs

Setting	Random	DeViSE	SK4	MIML
5-way-0-shot	20.00	55.90 ± 0.09	79.68 ± 0.12	79.54 ± 0.06
10-way-0-shot	10.00	42.29 ± 0.08	66.17 ± 0.11	61.14 ± 0.10

Table 3: Experimental results of zero-shot classification on FewRel development set.



Ablation Study

 Ablation study in 10-way5-shot setting, by removing each component, including meta-information guided fast initialization (MI) and adaptation (MA), class-aware parameter normalization (NM) and virtual adversarial training (VAT)

Model	MAML	MIML	MIML w/o MI	MIML w/o MA	MIML w/o NM	MIML w/o VAT
Accuracy	$ $ 85.79 \pm 0.15	$\textbf{91.60} \pm \textbf{0.21}$	86.43 ± 0.17	89.59 ± 0.19	84.17 ± 0.13	89.43 ± 0.09

Table 4: Ablation results in 10-way-5-shot setting on FewRel development set. MI/MA: metainformation guided fast initialization/adaptation, NM: Normalization, VAT: virtual adversarial training.

Visualization

- Visualizing the workflow of MIML in the presence of 20% noise in 5-way-5-shot setting and comparing it with MAML
- The initialization representations and adaptation steps are visualized by applying principal component analysis

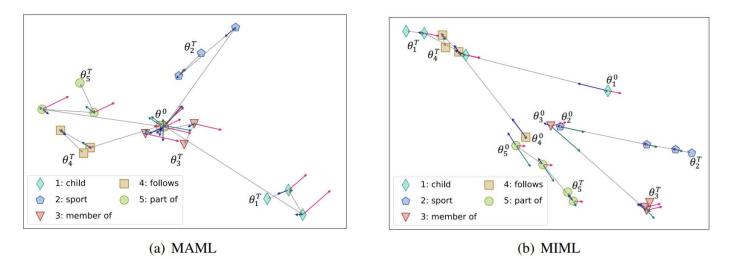


Figure 2: Visualization of initialization and adaptation process of meta-learning models, in 5-way-5-shot setting with 20% noise. At each iteration, the adaptation gradients for a class parameter θ_i come from three parts: informative instances from class C_i (marked in **green** arrows), noisy instance for class C_i (marked in **red** arrows), and instances for other classes (marked in **blue** arrows).¹ Best viewed in color.

Future Works

- Meta information
 - Exploring more meta-information for meta-learning, such as class descriptions and knowledge graphs
- Enhanced Encoder
 - Developing more sophisticated models to capture the finegrained interactions between the high-level meta information and concrete instances, to better guide meta-learning for fewshot classification problem
- Hybrid approach for meta learning
 - Integrating optimization-based approaches and metric-based approaches to make a better performance, to do few-shot classification and zero-shot classification simultaneously

Q&A Thank you!