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Context : Reinforcement Learning
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Context : AlphaGo

 First time an Al system beat
humans in Go

* However, AlphaGo algorithm is:
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Context : AlphaZero

* One same algorithm that can perform at superhuman level for:

* Chess
* Go
* Shogi

* AlphaZero algorithm is a general technique:

* Uses no human data

* Uses no expert domain knowledge as features

* However, it is limited to perfect-information games only

AlphaZero
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Context : Perfect-Information vs Imperfect-Information Games




Context : No-Limit Texas Hold’em Poker (NLHE)

Poker is the classic benchmark challenge for
solving imperfect-information games.

NLHE is the most popular, most played and most
widely studied variant of poker.

2017: First Al beat expert humans at 2p NLHE

DeepStack - University of Alberta in Edmonton
Libratus - Carnegie Mellon University

2019: First Al beat expert humans at 6p NLHE

Pluribus - Carnegie Mellon University and Facebook Al

* Techniques used in Poker Al are very different
from techniques used in AlphaGo and AlphaZero




Premise of ReBel

* Main goal: One single algorithm that can solve both perfect-information games and
imperfect-information games.

* ReBel: Recursive Belief-based Learning
* Not yet achieve superhuman performance in both perfect-information games and imperfect-information games
* Unify the 2 research domains of perfect and imperfect info game Al
* Open a new path to future development of one single algorithm that can master both domains
* When applied to imperfect-information games:

* Ability to reach optimum strategy, converge to Nash equilibrium in two-player zero-sum games
* Produce superhuman result in two-player NLHE
* Use significantly less domain knowledge then prior poker bots

* When applied to perfect-information games:

* Reduce to an algorithm like AlphaZero



Challenge : Why can’t the same techniques be applied?

AlphaZero

* Train a value network through self-play Full AlphaGo Zero

deep reinforcement learning
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* At training time:

: No real-time search SR, W B ——
* Use MCTS algorithm to find leaf nodes (states) \
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e RL+Search is critical to achieving
superhuman performance
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* No Al agent reached superhuman ]

performance in Go without search at both 0-
training and test time.

* However, in imperfect-information games,
RL+Search algorithms are:
* not theoretically sound
* not been shown to be successful



Challenge : Solving Perfect-Information games

Key concepts in perfect-information games Al:

 State: a configuration of the world

* Value of state: a unique value assuming all players playing optimally
from that point forward

* Value network:
* Input: a specific state
* Qutput: an estimated value of given state

Methods of training value network:

* Handcrafted heuristic function with expert domain knowledge
* Deep Blue: beat top humans at chess in 1997

* Train on data from expert human games
* AlphaGo

* Self-play reinforcement learning
* AlphaZero



Challenge : Solving Perfect-Information games

Why value function?
« Can be solved with simple techniques such as backward induction ovet€af node Subgame
the whole game (very resource intensive)

* Value function: help approximate optimal policy without solving the
entire game

Solution: combine value function with search "‘“3’

* Look a certain number of moves a head, discover leaf nodes (states)

Estimate values of states with value network

Perform backward induction with estimated state values

lgnore states below leaf nodes

= Solve a subgame
= If perfect value network => optimal policy
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Challenge : Search in AlphaZero

Start of game

/ Leaf node Subgame
Solve with
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Challenge : Search in Imperfect-Information games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+
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Challenge : Search in Imperfect-Information games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Depth-Limited Rock-Paper-Scissors+
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Proposed approach

Apply RL+Search framework to imperfect information games

Convert imperfect-information games to continuous-state perfect-information games

Use an expanded notion of “state” as public belief state (PBS)

PBSs: common-knowledge belief distribution over states, determined by the public observations shared
by all agents and the policies of all agents

Use a PBS value function during search

Important assumptions:

» Rules of the game and the agents’ policies (including search algorithms) are common knowledge.
» Outcome of random processes (i.e., the random seeds) are not common knowledge.



Terminologies

LECIONARIOS4
' All In !

% World statew € W Carralutis

Action space A |

Transition function T(w,a) € W
Reward function R;(w,a) € W
Private and public observations Opriviy W, a, W) Opyp (W, a,w')

Historyh = {w?,a% wl, al, ..., wt}
Info state (action- observatlon hlstory) s; ={02,a?,0},4}, ...,0}
Public state s,,,;, = {OPub,Opub, e pub}

Policy and policy profile r; m = {my,m,, ..., Tx}
Expectedvalue v{*(h) v;(m)

Nash equilibrium policy profile v;(7*) = max, v;(m;, 7_;)
Subgame and depth-limited subgame
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Proposed approach

Problem 1: Impossible to use world state, must use info state instead.

Problem 2: When using info state, there is not enough information for value network to calculate
optimal strategy

Solution: change definition of state so that value of state is well defined

v(Rock) => not well-defined
v([0.8 Rock, 0.1 Paper, 0.1 Scissors]) = 0.8*(-1) + 0.1*0 + 0.1*2 =-0.6 => well-defined

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+




Convert imperfect-information games to perfect-information
games
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Convert imperfect-information games to perfect-information
games
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Convert imperfect-information games to perfect-information
games -
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Discrete representation Belief representation "




Convert imperfect-information games to perfect-information

games
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Convert imperfect-information games to perfect-information
games
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Convert imperfect-information games to perfect-information

games
1 1
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——  Public Belief State (PBS)

A joint probability
distribution over the

1 1 , .
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Convert imperfect-information games to perfect-information
games

* Finding: Any imperfect information game can be viewed as a high
dimensional continuous perfect information game.

* Question: Is it possible to use an algorithm like AlphaZero on the
belief representation of the game, since it is a perfect information
game now?

* Answer: Theoretically yes, but due to continuity and high
dimensionality of state/action space, it is not tractable.

e Solution: ReBelL



ReBel

Important notes on Public Belief States
* PBSs are identical to perfect-information states in perfect information games

* PBSs always have unique value in 2p zero-sum games
* Possible to use value function

* For imperfect-information games action/state space is continuous and high-dimensional
* Traditional search methods such as MCTS become impractical

* Fortunately, action space is a convex optimization problem (for 2p0s)
* Algorithms similar to gradient-descent can be used to efficiently solve subgames to find optimal

policy
 Common algorithms: Fictitious Play (FP) or Counterfactual Regret Minimization (CFR)



Initial PBS of the game

ReBel

- Reminder: a PBS is a joint probability distribution over the Leaf node

agents’ possible infostates

« ReBel'’s search algorithm operates on supergradients of _._.“
the PBS value function at leaf nodes, not on PBS values

directly

* In 2p0s games, supergradient of the PBS value function
can be calculated with infostate values.

i |/ ( - ,'.'T;.n
vy (8iB) = max Z p(h|s;, B_i)v;
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* Instead of learning a PBS value function, ReBeL learns an
infostate- .~ _ ~ ~
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ReBel

Self Play RL and search for PBSs:

Generate a depth-limited subgame rooted at the initial PBS

Sub%ame is solved by running T iterations of an iterative
equilibrium-finding algorithm in the discrete representation of
the game

Use the learned value network to approximate leaf values on
every Iteration

During training:

* the infostate values at root PBS computed during search are added as
training examples for value network

* the subgame policies are added as training examples for the policy
network (optional)

Next, a leaf node is sampled, and the process repeats with the
PBS at sampled leaf node being the new subgame root

Leaf node

Initial PBS of the game
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ReBel

Algorithm 1 ReBeL: RL and Search for Imperfect-Information Games

function SELFPLAY(S3,.,6",0™, DV, D7) > /3, is the current PBS
while !ISTERMINAL(S3,) do
(G + CONSTRUCTSUBGAME(/3,.)
7, whvam  INITIALIZEPOLICY(G,0™) b tyam = 0 and 7” is uniform if no warm start
G + SETLEAFVALUES(G, 7, whwam_§v)
v(Br) + COMPUTEEV(G, mrivam)
tsampte ~ UNif{twam + 1,7} > Sample an iteration
fort = (twarm + 1)..1 do
if ¢ = t;qmple then
.. + SAMPLELEAF(G, ¢~ 1) > Sample one or multiple leaf PBSs
i UPDATEPOLICY(G, i1
T t+l T+ tw'%lﬂt
G+ SETLEAFVALUES(C T, oY)
v(Br) « ogv(Br) + &7 COMPUTEEV(G, )

Add {3r,v(Br)} to D? > Add to value net training data
for 5 € G do > Loop over the PBS at every public state in G
Add {3,7(5)} to DT > Add to policy net training data (optional)

B, + B,




Initial PBS of the game

Re Be L Initial PBS of the gar

Leaf node

Solve with

Fictitious Play / CFR
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Blue wins! 28



ReBel: Test time strategy

To play Nash equilibrium without being exploited easily at test time:
* Stop CFR on a random iteration and assume beliefs from this iteration

* Opponent will not know ReBel’s beliefs, and therefore cannot predict its
policy

* ReBel’s subgame policy will be a Nash equilibrium in expectation

*This is the exact same algorithm used in training



Experiment setup

Benchmark games:
e 2p NLHE
 Liar’s Dice

* Turn endgame Hold’em (THE)

* Reduce action space to maximum 9 actions
* Bet and stack size are randomized during training

Value and policy networks:

Multiplayer perceptron

GelLU activation function

LayerNorm

Adam optimizer

Pointwise Huber loss (value network)

Mean squared error loss (policy network)

Environment

PyTorch
One single machine for training

128 machines with 8 GPUs each for data generation



Experimental Results in THE
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Figure 2: Convergence of different techniques in TEH. All subgames are solved using CFR-AVG. Perfect Value
Net uses an oracle function to return the exact value of leaf nodes on each iteration. Self-Play Value Net uses a
value function trained through self play. Self-Play Value/Policy Net additionally uses a policy network to warm
start CFR. Random Beliefs trains the value net by sampling PBSs at random.
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Experimental Results in 2p NLHE

Bot Name Slumbot BabyTartanian8 [9] LBR [39] Top Humans
DeepStack [40] < % 383 +112 -
Libratus [12 - 63 £ 14 - 147 & 39
Modicum [15 115 613 - -
ReBeL (Ours) 45+ 5 0+4 881 + 94 165 + 69

Table 1: Head-to-head results of our agent against benchmark bots BabyTartanian8 and Slumbot, as well as top
human expert Dong Kim, measured in thousandths of a big blind per game. We also show performance against
LBR [39] where the LBR agent must call for the first two betting rounds, and can either fold, call, bet 1x pot, or
bet all-in on the last two rounds. The + shows one standard deviation. For Libratus, we list the score against all
top humans in aggregate; Libratus beat Dong Kim by 29 with an estimated + of 78.
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Experimental Results in Liar’s Dice

Algorithm Ix4f Ix5f  Ix6f  2x3f

Full-game FP 0.012 0.024 0.039 0.057
Full-game CFR | 0.001 0.001 0.002 0.002

ReBeL FP 0.041 0.020 0.040 0.020
ReBeL CFR-D | 0.017 0.015 0.024 0.017

Table 2: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces and 2 dice
with 3 faces. The top two rows represent baseline numbers when a tabular version of the algorithms is run on the
entire game for 1,024 iterations. The bottom 2 lines show the performance of ReBeL operating on subgames of
depth 2 with 1,024 search iterations. For exploitability computation of the bottom two rows, we averaged the
policies of 1,024 playthroughs and thus the numbers are upper bounds on exploitability.
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Conclusions and Broader Impact

* ReBel: a major step toward developing universal techniques for multi-agent interactions
* Generalizes the paradigm of self-play RL and search to imperfect-information games
e Converges to a Nash equilibrium in 2p0s games

* Limitations:
* The input to value and policy functions grows linearly with the number of infostates in a public
state (intractable in games with strategic depth and little common knowledge)
* Theoretical proves only limited to 2p0s games

* Broader impact:
* Potential future applications in auctions, negotiations, cybersecurity, and autonomous vehicle
navigation (imperfect-information multi-agent interactions)
* Potential risk if used for cheating in recreational games such as poker



Useful resources

ReBel implementation for Liar’s Dice here
DeepMind blog post on AlphaZero here
DeepMind Reinforcement Learning Course here
A paper on Deep CFR here

Pluribus article and demo here

A paper on Poker and Game Theory here


https://github.com/facebookresearch/rebel
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://www.youtube.com/playlist?list=PLqYmG7hTraZBKeNJ-JE_eyJHZ7XgBoAyb
https://research.fb.com/publications/deep-counterfactual-regret-minimization/
https://www.cmu.edu/news/stories/archives/2019/july/cmu-facebook-ai-beats-poker-pros.html
https://poker.cs.ualberta.ca/publications/IJCAI03.pdf

