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Background Information
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Video Summarization

• Input: raw frames in a long video

• Output: subset of selected frames 
(shots) as a representative 
summary of video content
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Why Video Summarization?
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Applications of Video Summarization

• For media organizations: allow for effective indexing, browsing, retrieval and promotion 
of entertainment media assets

• For video sharing platforms: improve viewing experience, enhance viewers’ engagement 
and increase content consumption. 

• Generate trailers or teasers of movies or TV series

• Generate video synopsis of surveillance camera, for time-efficient progress monitoring 
or security purposes

• Generate highlights of event (sports game, performance, public debate, etc.)
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Video Summarization 
Using Deep Neural Networks
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Overview
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Overview:
Visual content as 
Feature Vectors
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Overview:
Deep Summarizer 
Network
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Overview: Approaches
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Unimodal approaches

Supervised Learning

• Learn frame importance by modeling 
the temporal dependency among 
frames
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Video Summarization Using Fully Convolutional Sequence Networks

M. Rochan, L. Ye, and Y. Wang, Video Summarization Using Fully Convolutional Sequence Networks (ECCV 2018)
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Video Summarization Using Fully Convolutional Sequence Networks

M. Rochan, L. Ye, and Y. Wang, Video Summarization Using Fully Convolutional Sequence Networks (ECCV 2018)
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Video Summarization Using Fully Convolutional Sequence Networks

M. Rochan, L. Ye, and Y. Wang, Video Summarization Using Fully Convolutional Sequence Networks (ECCV 2018)

1 x T x K

W x H x 3
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Video Summarization Using Fully Convolutional Sequence Networks

M. Rochan, L. Ye, and Y. Wang, Video Summarization Using Fully Convolutional Sequence Networks (ECCV 2018)

1 x T x 2
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Unimodal approaches

Supervised Learning

• Learn frame importance by modeling 
the spatiotemporal structure of the 
video
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Unimodal approaches

Supervised Learning

• Learn summarization by fooling a 
discriminator when trying to 
discriminate a machine-generated 
from a human-generated summary
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Unimodal approaches

Unsupervised Learning

• Learn summarization by fooling a 
discriminator when trying to 
discriminate the original video (or set 
of keyframes) from a summary-based 
reconstruction of it
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Video Summarization by Learning from Unpaired Data

M. Rochan, and Y. Wang, Video Summarization by Learning from Unpaired Data (CVPR 2019)
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Video Summarization by Learning from Unpaired Data

M. Rochan, and Y. Wang, Video Summarization by Learning from Unpaired Data (CVPR 2019)
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Unimodal approaches

Unsupervised Learning

• Learn summarization by targeting 
specific desired properties for the 
summary
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Unimodal approaches

Unsupervised Learning

• Build object-oriented summaries by modeling the key-motion of important visual 
objects

�  perform a preprocessing step to find important objects and their key-motions

�  represent the whole video by creating super-segmented object motion clips

�  generate summaries that show the representative objects in the video and the key-motions 
of each of these objects
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Unimodal approaches

Weakly-supervised Learning

• Learn from semantically similar web videos
� Use video-level metadata to define a categorization of videos.

� Leverage multiple videos of a category to extract features and learn to automatically categorize new videos. 

� Use the learned model to select the video segments that maximize the relevance between the summary and the video category.

• Learn using annotations from a similar domain
� Learn from third-person annotated videos.

� Exploit transfer learning to learn how to summarize first-person videos.

• Learn using weakly/sparsely-labeled data 
� Typically use reinforcement learning
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Multimodal approaches

Supervised Learning

• Use textual video metadata

• Use other types of data

24



Current state of development: Supervised Approaches

• The best-performing supervised approaches utilize tailored attention mechanisms (to 
capture variable-range temporal dependency) or memory networks (to capture 
long-range temporal dependencies).

• Some works exhibit high performance in one of the datasets and very low or random 
performance in the other datasets (indication of overfitting).

• Multimodality approaches are not yet competitive compared to the unimodal ones that 
rely on the analysis of the visual content only.

• The use of weak labels does not yet enable good summarization.
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Current state of development: Unsupervised Approaches

• The use of GANs seems to be the most promising choice, as GAN-based methods 
perform the best among unsupervised approaches.

• The use of attention mechanisms helps to identify the important parts of the video and 
boost performance.

• Techniques that rely on reward functions and reinforcement learning are not yet 
competitive compared to GAN-based methods.

• Some methods low or random performance.
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Future Directions
• Major research direction is towards the development of supervised algorithms.

• Unsupervised video summarization methods that combine the merits of adversarial and reinforcement 
learning should be further explored.

• Advanced multi-head attention mechanisms, for better estimating variable-range temporal 
dependencies among parts of the video.

• Extend LSTM architectures with high-capacity memory networks, to capture long-range dependencies of 
the visual content, especially for long videos (e.g., movies).

• Introduce domain-specific rules in the unsupervised video summarization process (i.e., introducing the 
human in the loop).

• Multimodal summarization approaches using both visual and audio modality of the video, consider 
audio segmentation to produce more natural story narration.
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