ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND DEFENSES

Florian Tram`er, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick McDaniel, April 2020

INTRODUCTION

- ML models are vulnerable to adversarial examples
- Adversarial Examples are transferable across models enabling *Black-box attacks* (attacks performed with no prior knowledge of the model)
- Solution: Adversarial Training
 - Augmenting training data with adversarial examples
 - One suggested paper by Madry et al. 2017 tries to implement this but it was not scalable to ImageNet
- Is it possible to have robust models against *black-box* adversaries?

INTRODUCTION

- What the paper proposes:
 - Show that adversarially trained models using single-step methods remain vulnerable to simple attacks i.e., fast-single step methods that maximize the model's loss converge to a degenerate global minimum
 - *Ensemble Adversarial Training,* a technique that arguments training data with perturbations transferred from other models

- Threat Model
- Adversarial Training

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \quad \underset{(x, y_{\operatorname{true}}) \sim \mathcal{D}}{\mathbb{E}} \left[\underset{\|x^{\operatorname{adv}} - x\|_{\infty} \leq \epsilon}{\max} L(h(x^{\operatorname{adv}}), y_{\operatorname{true}}) \right].$$
(1)

- Threat Model
- Adversarial Training
 - Fast Gradient Sign Method (FGSM): linearizing the inner maximization problem

$$x_{\text{FGSM}}^{\text{adv}} \coloneqq x + \varepsilon \cdot \text{sign}\left(\nabla_x L(h(x), y_{\text{true}})\right) . \tag{2}$$

- Threat Model
- Adversarial Training
 - Fast Gradient Sign Method (FGSM)
 - Single-Step Least-Likely Class Method (Step-LL): variant of FGSM, targets the least-likely class

$$x_{\text{LL}}^{\text{adv}} \coloneqq x - \varepsilon \cdot \text{sign}\left(\nabla_x L(h(x), y_{\text{LL}})\right) . \tag{3}$$

- Threat Model
- Adversarial Training
 - Fast Gradient Sign Method (FGSM)
 - Single-Step Least-Likely Class Method (Step-LL)
 - Iterative Attack (I-FGSM or Iter-LL): iteratively applies the FGSM or Step-LL k number of times

A Degenerate Global Minimum for Single Step Adversarial Training
On FGSM and Step-LL we approximate Equation (1) by replacing the solution to the inner with output of the attacks

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \quad \underset{(x, y_{\text{true}}) \sim \mathcal{D}}{\mathbb{E}} \left[L(h(x_{\text{FGSM}}^{\text{adv}}), y_{\text{true}}) \right].$$
(4)

$$L(h^*(x_{\text{FGSM}}^{\text{adv}}), y_{\text{true}}) \ll \max_{\|x^{\text{adv}} - x\|_{\infty} \le \epsilon} L(h^*(x^{\text{adv}}), y_{\text{true}})].$$
(6)

- Ensemble Adversarial Training
 - Augmenting a model's training data with adversarial examples crafted on other static pre-trained models (decouple the generation of adversarial examples from the model being trained)
 - Since adversarial examples are transferable between models, perturbations crafted on an external model are good approximations for the maximization problem on (1)
- Domain Adaptation with Multiple Sources

EXPERIMENTS

• Attacks against adversarially trained networks

Table 1: Error rates (in %) of adversarial examples transferred between models. We use Step-LL with $\epsilon = \frac{16}{256}$ for 10,000 random test inputs. Diagonal elements represent a white-box attack. The best attack for each target appears in bold. Similar results for MNIST models appear in Table 7.

	Source						Source				
Target	v4	v3	v3 _{adv}	IRv2	IRv2 _{adv}	Target	v4	v 3	v3 _{adv}	IRv2	IRv2 _{adv}
v4	60.2	39.2	31.1	36.6	30.9	v4	31.0	14.9	10.2	13.6	9.9
v3	43.8	69.6	36.4	42.1	35.1	v3	18.7	42.7	13.0	17.8	12.8
v3 _{adv}	36.3	35.6	26.6	35.2	35.9	v3 _{adv}	13.6	13.5	9.0	13.0	14.5
IRv2	38.0	38.0	30.8	50.7	31.9	IRv2	14.1	14.8	9.9	24.0	10.6
IRv2 _{adv}	31.0	30.3	25.7	30.6	21.4	IRv2 _{adv}	10.3	10.5	7.7	10.4	5.8
Тор 1						Тор 5					

EXPERIMENTS

• Attacks against adversarially trained networks

Table 2: Error rates (in %) for Step-LL, R+Step-LL and a two-step Iter-LL on ImageNet. We use $\epsilon = \frac{16}{256}$, $\alpha = \frac{\epsilon}{2}$ on 10,000 random test inputs. R+FGSM results on MNIST are in Table 7.

	v4	v3	v3 _{adv}	IRv2	IRv2 _{adv}	v4	v3	v3 _{adv}	IRv2	IRv2 _{adv}
Step-LL	60.2	69.6	26.6	50.7	21.4	31.0	42.7	9.0	24.0	5.8
R+Step-LL	70.5	80.0	64.8	56.3	37.5	42.8	57.1	37.1	29.3	15.0
Iter-LL(2)	78.5	86.3	58.3	69.9	41.6	56.2	70.2	29.6	45.4	16.5
	Top 1					Top 5				

EXPERIMENTS

• Attacks against Ensemble Adversarial Training

Table 4: Error rates (in %) for Ensemble Adversarial Training on ImageNet. Error rates on clean data are computed over the full test set. For 10,000 random test set inputs, and $\epsilon = {}^{16}/_{256}$, we report error rates on white-box Step-LL and the *worst-case error* over a series of black-box attacks (*Step-LL*, *R+Step-LL*, *FGSM*, *I-FGSM*, *PGD*) transferred from the holdout models in Table 3. For both architectures, we mark methods tied for best in bold (based on 95% confidence).

The subsequent work of Wu et al. (2020) proposes more powerful black-box attacks that result in error rates of at least 78% for all models.

		To	p 1	Top 5				
Model	Clean	Step-LL	Max. Black-Box	Clean	Step-LL	Max. Black-Box		
v3	22.0	69.6	51.2	6.1	42.7	24.5		
v3 _{adv}	22.0	26.6	40.8	6.1	9.0	17.4		
v3 _{adv-ens3}	23.6	30.0	34.0	7.6	10.1	11.2		
v3 _{adv-ens4}	24.2	43.3	33.4	7.8	19.4	10.7		
IRv2	19.6	50.7	44.4	4.8	24.0	17.8		
IRv2 _{adv}	19.8	21.4	34.5	4.9	5.8	11.7		
IRv2 _{adv-ens}	20.2	26.0	27.0	5.1	7.6	7.9		

CONCLUSION AND FUTURE WORK

- This paper has showed that adversarial training can be improved by decoupling generation of adversarial examples from the model being trained
- Experiments show that robustness attained to attacks from some models transfers to attacks from other models

RESEARCH PLANS

- Aid the generation of adversarial examples that are used in the training process of an adversarially robust model by the use of Generative Models
- Explore more into **domain adaptation** in order to improve results from current paper