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INTRODUCTION

● Closed-to-Open eye inpainting

● GANs “IN-PAINT” a person’s eyes without losing the person’s defining features

● Perceptually and semantically plausible results

● Exemplar GANs (ExGANs)

○ Utilizing exemplar information

○ Reference image or perceptual code used as a conditioning example
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INTRODUCTION

● Deep Convolutional Neural Networks (DNNs) for inpainting

● Learn to preserve features 

○ Missing regions of pictures showing natural scenery

○ Global lighting and skin tone of pictures that require facial transformation

● Can complete images of arbitrary resolutions by filling in missing regions of any 

shape
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INTRODUCTION

Picture with missing regions

In-painted output

S. Iizuka, E. 
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2017.
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INTRODUCTION

● Downside of using DNNs to solve the problem of facial transformations

○ Don’t preserve identity of the person

○ Only insert a pair of eyes that correspond to similar faces but not to that 

specific face

○ Defining features on the person’s eyes such as uncommon eye shape will be 

lost
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CONTRIBUTION

● ExGAN based Eye In-Painting

● Similar to Conditional-GANs (CGANs)

○ Add extra information to the generator of the network

○ CGANs vs ExGANs

○ Providing examples to “identifying traits” of the in-painted area in this case 

the eyes
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CONTRIBUTION:
CGAN 
Architecture
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CONTRIBUTION

● Provided that multiple images of the object are available at inference time, 

ExGANs are able to generate semantically and perceptually consistent output

● Examples can be of two types:

○ Raw Images

○ Perceptually-coded sections of images 

8



EXEMPLAR GANS FOR IN-PAINTING

● Using a second source of related information to guide the generator as it creates 

an image

● A picture of  a person in a different pose but with eyes opened

● Use the reference image or the perceptual code generated from that image to 

“guide” that is inserted in different places when synthesizing results

● Two approaches

○ Reference-based In-Painting

○ Code-based In-Painting 
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EXEMPLAR GANS FOR IN-PAINTING: REFERENCE 
IN-PAINING
● Using a raw image as a reference to guide the process of in-painting

● For each image xi, there is a reference image ri
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EXEMPLAR GANS FOR IN-PAINTING: REFERENCE 
IN-PAINING
● As compared to vanilla GAN formulation (shown below), both generator and 

discriminator can take an example as an input
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EXEMPLAR GANS FOR IN-PAINTING: CODE 
IN-PAINTING
● Compress the area of interest on the image

● Compression function C(r) 
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EXEMPLAR GANS FOR IN-PAINTING
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EXEMPLAR GANS FOR IN-PAINTING: MODEL 
ARCHITECTURE
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EXEMPLAR GANS FOR IN-PAINTING: MODEL 
ARCHITECTURE
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● Adversarial Loss: in-painted image vs reference image

○ Global Adversarial Loss: enforcing overall semantic consistency

○ Local Adversarial Loss: ensures detail consistency and sharpness

● Perceptual Loss: optional loss measuring distance of generated image to the 

original reference 

● Reconstruction Loss:  in-painted image vs ground truth image 



RESULTS
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RESULTS
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THANK YOU :)
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