

META-RCNN: META LEARNING FOR FEW-SHOT OBJECT DETECTION

2021.09.8 Ershang Tian

Table of Contents

BACKGROUND

METHOD

EXPERIMENTS

METHOD

EXPERIMENTS

Meta-RCNN

Meta-RCNN learns an object detector in an episodic learning paradigm on the (meta) training data.

This learning scheme helps acquire a prior which enables Meta-RCNN to do few-shot detection on novel tasks.

Built on top of the Faster RCNN model, in Meta-RCNN, both the Region Proposal Network (RPN) and the object classification branch are meta-learned.

The meta-trained RPN learns to provide class-specific proposals, while the object classifier learns to do few-shot classification. The novel loss objectives and learning strategy of Meta-RCNN can be trained in an end-to-end manner.

Meta-RCNN

In meta learning, a set of tasks in a few-shot setting is simulated from a large corpus of annotated data, and the model is optimized to perform well over these few shot tasks.

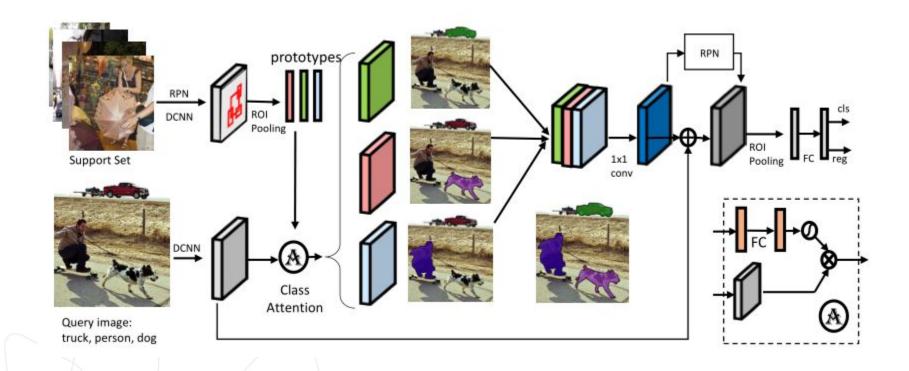
- i) Detection algorithms not only require classifying objects but also need to correctly localize objects in cluttered backgrounds by using a Region Proposal Network (RPN) and bounding box (bbox) regressors.
- ii) For a given task with one (or few) annotated image(s), the annotated image may contain objects from several classes.



Query set of 1-shot Task

Support set of 1-shot Task

Results of query image


Dataset

METHOD

METHOD

The Meta-RCNN workflow

METHOD

EXPERIMENTS

EXPERIMENTS

1. DATASETS AND IMPLEMENTATION DETAILS

DATASET	Train	#Img	#cls	Test	#Img	#cls
VOC-FSOD	VOC2007trainval	~ 4.9 k	10	VOC2007test	$\sim 2.2 \mathrm{k}$	10
IMAGENET-FSOD	ImageNet-LOC	~ 53 k	100	ImageNet-LOC	~ 117 k	214

Table 1: Two few-shot object detection benchmark testbeds for performance evaluation

Construct two benchmark testbeds to facilitate the performance evaluation for few-shot object detection in meta-learning settings.

The first is on Pascal VOC2007, and the second is on the animal subset of ImageNet-LOC dataset.

Experiments

2. RESULTS ON VOC-FSOD BENCHMARK

Method	5way-1shot	5way-3shot	5way-5shot
vanilla FRCN (Ren et al., 2015)	$14.78\% \pm 1.02\%$	$20.34\% \pm 1.26\%$	$26.89\% \pm 1.23\%$
LSTD (Chen et al., 2018)	$17.66\% \pm 1.65\%$	$22.37\% \pm 0.81\%$	$29.00\% \pm 1.28\%$
FRCN-PN	$12.71\% \pm 0.70\%$	$13.91\% \pm 0.70\%$	$14.33\% \pm 0.61\%$
Meta-RCNN (ours)	19.22% \pm 1.01%	$24.45\% \pm 1.20\%$	$31.11\% \pm 0.88\%$

Table 2: mAP Performance Evaluation on the VOC-FSOD BENCHMARK

vanilla FRCN: the vanilla Faster RCNN which is the most popular object detection algorithm with competitive performance on many benchmarks.

LSTD is a few-shot detection algorithm based on Faster RCNN. LSTD uses categorical regularization items which transfers knowledge of L dataset to S dataset.

FRCN-PN is a modified version of Faster RCNN using meta-learning, which replaces final FC classification layer with non-parametric prototypical network (PN), which is considered as a variant of RepMet.

Experiments

2. RESULTS ON VOC-FSOD BENCHMARK

Model	Backbone	5way-1shot	5way-3shot	5way-5shot
vanilla FRCN (Ren et al., 2015)	VGG16	24.9%	26.5%	28.4%
FRCN-PN	VGG16	24.7%	24.9%	26.1%
Meta-RCNN (ours)	VGG16	26.1%	27.9%	33.7%

Table 3: Recall evaluation of Meta-RCNN on VOC-FSOD BENCHMARK test set.

Performance of RPN: Here, we present the performance of RPN to validate our concerns of the negative impact of irrelevant categories.

We use regular FRCN and FRCN-PN as our baseline.

Experiments

3. RESULTS ON IMAGENET-FSOD BENCHMARK

Model	Backbone	50way-1shot	50way-5shot
vanilla FRCN (Ren et al., 2015)	VGG16	16.5%	34.3%
LSTD (Chen et al., 2018)	VGG16	19.2%	37.4%
RepMet (Schwartz et al., 2019)	DCN+FPN	24.1%	39.6%
Meta-RCNN (ours)	VGG16	24.6%	40.1%
Meta-RCNN (ours)	ResNet50	25.1%	40.3%

Table 4: mAP performance evaluation on IMAGENET-FSOD BENCHMARK.

On the **ImageNet-FSOD** benchmark, we adapt the weights of detector pretrained on **MSCOCO** trainval set, and then optimize Meta-RCNN based on this starting point.

METHOD

EXPERIMENTS

CONCLUSION

Meta learning based detection algorithm Meta RCNN, which is robust to few-shot learning, and the proposed training strategies make it more suit able in detection scenario.

Specififically it adapts the Faster RCNN method and enables meta-learning of the object classififier, the RPN and the bounding box regressor.

The RPN is meta-trained through a novel class-specifific attention module.

Q&A Thank you!

