Targeted Speech Adversarial Example Generation With Generative Adversarial Network

DONGHUA WANG, LI DONG, RANGDING WANG, DIQUN YAN AND JIE WANG

Presented By: Hiskias Dingeto

- Adversarial Examples
 - Explaining and Harnessing Adversarial Examples, 2015
- Modifying the features of an instance of inputs intentionally in order to cause misclassification

- Adversarial Examples in The Physical World
 - Apply slight modifications to real life images and causing misclassification
 - Implementing Adversarial Attacks on roadside traffic signs

- Automatic Speech Recognition Systems
 - Apply Siri
 - Amazon Alexa
 - Google Assistance
- Various systems aim to attack ASRs in different ways
- Other systems as compared to this system one of the following two drawbacks
 - Large computational cost
 - Perturbation added to the adversarial examples noticeably lowers the quality

- Attacking neural network based speech recognition models (Automatic Speech Recognition Systems or ASRs)
- Using GANs for constructing targeted speech adversarial examples
- Goal of Generator:
 - Generating noise that can cause misclassification
 - Fooling discriminator from distinguishing adversarial example from a normal sample
- Goal of Discriminator:
 - Distinguish generated adversarial examples from normal samples

RELATED WORK

- Generative Adversarial Network
 - Min-Max Game
 - Realistic image generation, image to image translation, text-to-image synthesis, adversarial example generation
- Speech Adversarial Example Generation
 - Fast Gradient Sign Method (FGSM)

PROBLEM FORMULATION

- Two types of Adversarial Attacks
 - Targeted Attacks: cause the system to misclassify to an known label
 - Untargeted Attacks: cause the system to misclassify to an unknown label hence untargeted
- Targeted Attacks are more difficult to implement
- Goal of the system:
 - Generate an adversarial example that could fool the ASR
 - Adversarial example should be similar to the original sample
- Use GANs to generate perturbation

• Framework overview:

FIGURE 1. The overview of the proposed framework.

• Generator

- Encoder decoder like network (UNet)
- (explained in the next figure)

• Discriminator

• (explained in the next figure)

Loss function

- Target Classifier Loss
- Adversarial Loss
- Regularization terms

$$L_{\mathcal{G}} = L_{\text{adv}}^{f} + \alpha L_{\text{fool}} + \beta L_{\text{hinge}} + \gamma L_{2},$$

• Architecture of the Generator

• Architecture of the Discriminator

EXPERIMENTAL RESULTS

- Performance Metric 1: Success Rate
 - o success_rate = #{misclassified_samples} / #{test_samples}
- Performance Metric 2: Objective Quality
 - Signal-to-Noise Ratio (SNR)
 SNF

$$\mathsf{SNR}(x^{\mathsf{adv}}) = 10 \cdot \log_{10} \frac{P_x}{P_{\delta}}$$

• PESQ

EXPERIMENTAL RESULTS

• Comparison of the proposed method with Alzantot and SirenAttack

Attacking Method	Attacking WideResNet on SpeechCmd			Attacking SampleCNN on GTZAN		
	success_rate	SNR(dB)	Time(s)	success_rate	SNR(dB)	Time(s)
Alzantot et al. [9]	84.96%	15.72	231.46	82.76%	14.15	215.36
SirenAttack [10]	89.25%	17.57	368.29	89.10%	15.39	452.21
Proposed	92.33%	20.27	0.009	90.58%	26.92	0.01

EXPERIMENTAL RESULTS

• Comparison between original speech sample with generated adversarial sample

FUTURE PLAN

- Research more on Adversarial Attacks
- Counteracting their effects in Machine Learning Models
- Find out more about what causes Machine Learning Models to misclassify Adversarial Examples