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INTRODUCTION

e Adversarial Examples

o Explaining and Harnessing Adversarial Examples, 2015
e Modifying the features of an instance of inputs intentionally in order to cause

misclassification
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INTRODUCTION

e Adversarial Examples in The Physical World

o  Apply slight modifications to real life images and causing misclassification
o Implementing Adversarial Attacks on roadside traffic signs




INTRODUCTION

e Automatic Speech Recognition Systems
o  Apply Siri
o Amazon Alexa
o Google Assistance

e Various systems aim to attack ASRs in different ways
e Other systems as compared to this system one of the following two

drawbacks
o Large computational cost
o Perturbation added to the adversarial examples noticeably lowers the quality



INTRODUCTION

e Attacking neural network based speech recognition models (Automatic
Speech Recognition Systems or ASRs)
e Using GANs for constructing targeted speech adversarial examples

e Goal of Generator:

o Generating noise that can cause misclassification
o Fooling discriminator from distinguishing adversarial example from a normal sample

e Goal of Discriminator:
o Distinguish generated adversarial examples from normal samples



RELATED WORK

e Generative Adversarial Network
o Min-Max Game
o Realistic image generation, image to image translation, text-to-image synthesis, adversarial
example generation
e Speech Adversarial Example Generation
o Fast Gradient Sign Method (FGSM)



PROBLEM

FORMULATION

e Two types of Adversarial Attacks

o Targeted Attacks: cause the system to misclassify to an known label
o Untargeted Attacks: cause the system to misclassify to an unknown label hence untargeted

Targeted Attacks are more difficult to implement

Goal of the system:

o Generate an adversarial example that could fool the ASR
o Adversarial example should be similar to the original sample

e Use GANSs to generate perturbation



TARGETED SPEECH ADVERSARIAL

EXAMPLE GENERATION USING GAN

e Framework overview:
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FIGURE 1. The overview of the proposed framework.



TARGETED SPEECH ADVERSARIAL

EXAMPLE GENERATION USING GAN

e Generator
o Encoder decoder like network (UNet)
o (explained in the next figure)

e Discriminator
o (explained in the next figure)

e Loss function
o Target Classifier Loss
o Adversarial Loss
o Regularization terms

Lg = Lﬁd\, + aLiool + BLninge + v L2,



TARGETED SPEECH ADVERSARIAL

EXAMPLE GENERATION USING GAN

e Architecture of the Generator
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TARGETED SPEECH ADVERSARIAL

EXAMPLE GENERATION USING GAN

Architecture of the Discriminator
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EXPERIMENTAL

RESULTS

e Performance Metric 1: Success Rate
o success_rate = #{misclassified_samples} / #{test_samples}
e Performance Metric 2: Objective Quality
o  Signal-to-Noise Ratio (SNR)
o PESQ

P
SNR(x2%) = 10 - log,, P—"‘,
)



EXPERIMENTAL

RESULTS

e Comparison of the proposed method with Alzantot and SirenAttack

: Attacking WideResNet on SpeechCmd Attacking SampleCNN on GTZAN
Attacking Method : _
success_rate  SNR(dB) Time(s) success_rate  SNR(dB)  Time(s)
Alzantot et al. [9] 84.96% 1542 231.46 82.76% 14.15 215.36
SirenAttack [10] 89.25% 17.57 368.29 89.10% 15.39 452.21

Proposed 92.33% 20.27 0.009 90.58 % 26.92 0.01




EXPERIMENTAL

RESULTS

e Comparison between original speech sample with generated adversarial
sample
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FUTURE PLAN

e Research more on Adversarial Attacks
e Counteracting their effects in Machine Learning Models
e Find out more about what causes Machine Learning Models to misclassify

Adversarial Examples



