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Introduction

Context R—-CNN

- leverages temporal context from the unlabeled frames of a novel
camera to improve performance at that camera.

- The attention—based approach, ggregate contextual features from
other frames to boost object detection performance on the
current frame.
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Introduction g

Context R—-CNN

» The model that can learn how to find and use other
potentially easier examples from the same camera to help
improve detection performance.

(a) Object moving out of frame.
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(b) Object highly occluded.



Introduction

focus on two static—camera domains:

- (1) species detection using camera traps

- (2) vehicle detection in traffic cameras
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Context R—CNN Architecture.

(a) High-level Context R-CNN architecture. (b) Single attention block.
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Building a memory bank

» Long Term Memory Bank (M-long)

- Given a keyframe j,, for which want to detect objects, iterate over
all frames from the same camera within a pre—defined time
i—r : i K TItEK, running a frozen, pre—trained detector on each
frame.

» Build our long—term memory bank (M—long) from feature vectors
corresponding to resultinn Aatartinne

Long
Term
Attention
Module
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Building a memory bank

» Long Term Memory Bank (M-long)

- Instance—level feature tensors after cropping proposals from the RPN
and save only a spatially pooled representation of each such tensor
concatenated with a spatiotemporal encoding of the DateTime and box
position.

« Curate by limiting the number of proposals for which store
features——consider multiple strategies for deciding which and how many
features to save to memory banks

« By using these strategies able to construct memory banks holding up to
8500 contextual features — represent a month’s worth of context from a
camera.
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Building a memory bank

Short Term Memory (M—short).

hold features for all box proposals in memory.

cropped instance—level features across a small window and globally pool
across the spatial dimensions.

A matrix of shape (# proposals per frame*# frames) X (feature depth)
containing a single embedding vector per box proposal, that is then
passed into the short term attention block.

Short
Term
Attention
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Building a memory bank

Warthog, Score: 0.998
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« Established object detection metrics: mAP at 0.5 loU and Average Recall
(AR)

» Results to a single—frame baseline for all three datasets

« In Snapshot Serengeti, investigating the effects of both short—term and
long—term attention, the feature extractor, the long—term time horizon
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Main Results

SS cCcT
Model | mAP AR | mAP AR

Context R-CNN | 559 3583 | 763
(a) Results across datasets

Single Frame I 379 465 | 568
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SS | mAP AR

Single Frame | 37.9 465
Maj. Votc | 37.8 46.4

ST Spatial | 39.6 36.0

S3D | 447 46.0

SF Attn | 449 50.2
ST Atn | 464 553

LT Attn | 55.6 575
ST+LT Attn | 559 583

(d) Companison across models
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Changing the Time Horizon

SS | mAP AR
One minute | 503 514 ;

Onc hour | 52.1 525
Oneday | 525 529

T ime differential (hours)

(b) Day

One week | 54.1 532 ¥ g,
One month | 556 57.5 8 i
a, 2
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¥ e 1
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(c) Week (d) Month
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Contextual features for constructing

M-long

SS | mAP AR
" -

One box per frame
COCO features
Only positive boxes
Subsample half
Subsample quarter

(c) Selecting memory
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55.6
503
539
525
50.8

57.5
55.8
56.2
56.1
55.0

CC | mAP AR

Singlc Frame :
Topl1Box | 405 293
Top 8 Boxes | 42.6 302

(¢) Adding boxes to M fo"9
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Contextual features for constructing
M-long
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Future Work

15

A model that leverages percamera temporal context up to a
month, and shows that in the static camera setting,
attention—based temporal context is particularly beneficial.

Context R—CNN, is general across static camera domains,
Improving detection performance over single—frame baselines on
both camera trap and traffic camera data.

Context R—CNN is adaptive and robust to passive—monitoring
sampling strategies that provide data streams with low, irregular
frame rates.
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